Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pawan Sharma is active.

Publication


Featured researches published by Pawan Sharma.


PLOS ONE | 2011

Mevalonate Cascade Regulation of Airway Mesenchymal Cell Autophagy and Apoptosis: A Dual Role for p53

Saeid Ghavami; Mark M. Mutawe; Pawan Sharma; Behzad Yeganeh; Karol D. McNeill; Thomas Klonisch; Helmut Unruh; Hessam H. Kashani; Dedmer Schaafsma; Marek Los; Andrew J. Halayko

Statins inhibit the proximal steps of cholesterol biosynthesis, and are linked to health benefits in various conditions, including cancer and lung disease. We have previously investigated apoptotic pathways triggered by statins in airway mesenchymal cells, and identified reduced prenylation of small GTPases as a primary effector mechanism leading to p53-mediated cell death. Here, we extend our studies of statin-induced cell death by assessing endpoints of both apoptosis and autophagy, and investigating their interplay and coincident regulation. Using primary cultured human airway smooth muscle (HASM) and human airway fibroblasts (HAF), autophagy, and autophagosome formation and flux were assessed by transmission electron microscopy, cytochemistry (lysosome number and co-localization with LC3) and immunoblotting (LC3 lipidation and Atg12-5 complex formation). Chemical inhibition of autophagy increased simvastatin-induced caspase activation and cell death. Similarly, Atg5 silencing with shRNA, thus preventing Atg5-12 complex formation, increased pro-apoptotic effects of simvastatin. Simvastatin concomitantly increased p53-dependent expression of p53 up-regulated modulator of apoptosis (PUMA), NOXA, and damage-regulated autophagy modulator (DRAM). Notably both mevalonate cascade inhibition-induced autophagy and apoptosis were p53 dependent: simvastatin increased nuclear p53 accumulation, and both cyclic pifithrin-α and p53 shRNAi partially inhibited NOXA, PUMA expression and caspase-3/7 cleavage (apoptosis) and DRAM expression, Atg5-12 complex formation, LC3 lipidation, and autophagosome formation (autophagy). Furthermore, the autophagy response is induced rapidly, significantly delaying apoptosis, suggesting the existence of a temporally coordinated p53 regulation network. These findings are relevant for the development of statin-based therapeutic approaches in obstructive airway disease.


Biochimica et Biophysica Acta | 2010

Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c.

Saeid Ghavami; Mark M. Mutawe; Kristin Hauff; Gerald L. Stelmack; Dedmer Schaafsma; Pawan Sharma; Karol D. McNeill; Tyler S. Hynes; Sam Kung; Helmut Unruh; Thomas Klonisch; Grant M. Hatch; Marek Los; Andrew J. Halayko

Statins inhibit 3-hydroxy-3-methyl-glutarylcoenzyme CoA (HMG-CoA) reductase, the proximal enzyme for cholesterol biosynthesis. They exhibit pleiotropic effects and are linked to health benefits for diseases including cancer and lung disease. Understanding their mechanism of action could point to new therapies, thus we investigated the response of primary cultured human airway mesenchymal cells, which play an effector role in asthma and chronic obstructive lung disease (COPD), to simvastatin exposure. Simvastatin induced apoptosis involving caspase-9, -3 and -7, but not caspase-8 in airway smooth muscle cells and fibroblasts. HMG-CoA inhibition did not alter cellular cholesterol content but did abrogate de novo cholesterol synthesis. Pro-apoptotic effects were prevented by exogenous mevalonate, geranylgeranyl pyrophosphate and farnesyl pyrophosphate, downstream products of HMG-CoA. Simvastatin increased expression of Bax, oligomerization of Bax and Bak, and expression of BH3-only p53-dependent genes, PUMA and NOXA. Inhibition of p53 and silencing of p53 unregulated modulator of apoptosis (PUMA) expression partly counteracted simvastatin-induced cell death, suggesting a role for p53-independent mechanisms. Simvastatin did not induce mitochondrial release of cytochrome c, but did promote release of inhibitor of apoptosis (IAP) proteins, Smac and Omi. Simvastatin also inhibited mitochondrial fission with the loss of mitochondrial Drp1, an essential component of mitochondrial fission machinery. Thus, simvastatin activates novel apoptosis pathways in lung mesenchymal cells involving p53, IAP inhibitor release, and disruption of mitochondrial fission.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells

Shilpa Raghuvanshi; Pawan Sharma; Sarman Singh; Luc Van Kaer; Gobardhan Das

Tuberculosis (TB) is the cause of 2 million deaths each year, which is the second highest cause of mortality from a single infectious disease worldwide. Resistance of these organisms to drugs has emerged as an important health concern. Alternative approaches to the prevention and treatment of tuberculosis are therefore urgently needed. Despite the generation of robust host immune responses, Mycobacterium tuberculosis (M. tb) successfully evades host immunity and establishes a persistent infection. The mechanism(s) by which M. tuberculosis manages to persist in the face of potent host immune responses remain(s) incompletely understood. Here, we demonstrate that M. tb suppresses T-lymphocyte responses by recruiting mesenchymal stem cells (MSCs) to the site of infection. We found that MSCs infiltrated tissues in mice containing M. tb organisms and T lymphocytes. We further demonstrate that MSCs suppressed T-cell responses by producing nitric oxide. Our findings reveal a key role of MSCs in the capacity of M. tb to evade host immune responses and identify these cells as unique targets for therapeutic intervention in tuberculosis.


Pulmonary Pharmacology & Therapeutics | 2009

Airway smooth muscle in asthma: phenotype plasticity and function.

Jeremy A. Hirota; Trang T.B. Nguyen; Dedmer Schaafsma; Pawan Sharma; Thai Tran

Clinical asthma is characterized by reversible airway obstruction which is commonly due to an exaggerated airway narrowing referred to as airway hyperresponsiveness (AHR). Although debate exists on the complex etiology of AHR, it is clear that airway smooth muscle (ASM) mediated airway narrowing is a major contributor to airway dysfunction. More importantly, it is now appreciated that smooth muscle is far from being a simple cell with only contractile ability properties. Rather, it is more versatile with the capacity to exhibit numerous cellular functions as it adapts to the microenvironment to which it is exposed. The emerging ability of individual smooth muscle cells to undergo changes in their phenotype (phenotype plasticity) and function (functional plasticity) in response to physiological and pathological cues is an important and active area of research. This article provides a brief review of the current knowledge and emerging concepts in the field of ASM phenotype and function both under healthy and asthmatic conditions.


Journal of Immunology | 2002

Mycobacterium tuberculosis Antigens Induce the Differentiation of Dendritic Cells from Bone Marrow

Vinoth K. Latchumanan; Balwan Singh; Pawan Sharma; Krishnamurthy Natarajan

We show in this study that incubation of freshly isolated bone marrow cells with Mycobacterium tuberculosis (M. tb) secretory Ag (MTSA), in the absence of any growth or differentiation-inducing factor, differentiates them into dendritic cell (DC)-like APCs. These DCs expressed moderate to high levels of various markers typical of DCs. These included T cell costimulatory molecules CD80, CD86, CD40, and CD54 and high levels of surface MHC class I and II on CD11c+ cells. The levels and the kinetics of up-regulation of these molecules were comparable with those of GM-CSF-differentiated DCs. Furthermore, these DCs exhibited morphology characteristics to DCs like the presence of dendritic processes. These DCs were also potent stimulators of allogeneic T cells and preferentially induced the secretion of IFN-γ over IL-10 from the interacting T cells. Interestingly, the differentiation of bone marrow cells into DC-like APCs was obtained with many other M. tb Ags, including whole cell extract of M. tb. Further characterization of MTSA-differentiated DCs showed that they were immature in nature, as stimulation of these DCs with TNF-α, anti-CD40, or LPS further up-regulated the surface levels of various molecules together with an increase in their T cell stimulatory capacity. The Ag-specific T cell responses of MTSA-differentiated DCs were mainly contributed by the CD4+ subset, indicating that MTSA was largely MHC II restricted. Furthermore, stimulation of bone marrow cells with MTSA induced the nuclear translocation of the transcription factor NF-κB, thereby indicating its role during MTSA-induced differentiation of DCs.


Journal of Cell Science | 2010

β-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release

Pawan Sharma; Saeid Ghavami; Gerald L. Stelmack; Karol D. McNeill; Mark M. Mutawe; Thomas Klonisch; Helmut Unruh; Andrew J. Halayko

The dystrophin–glycoprotein complex (DGC) links the extracellular matrix and actin cytoskeleton. Caveolae form membrane arrays on smooth muscle cells; we investigated the mechanism for this organization. Caveolin-1 and β-dystroglycan, the core transmembrane DGC subunit, colocalize in airway smooth muscle. Immunoprecipitation revealed the association of caveolin-1 with β-dystroglycan. Disruption of actin filaments disordered caveolae arrays, reduced association of β-dystroglycan and caveolin-1 to lipid rafts, and suppressed the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release. We generated novel human airway smooth muscle cell lines expressing shRNA to stably silence β-dystroglycan expression. In these myocytes, caveolae arrays were disorganized, caveolae structural proteins caveolin-1 and PTRF/cavin were displaced, the signaling proteins PLCβ1 and Gαq, which are required for receptor-mediated Ca2+ release, were absent from caveolae, and the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release, was diminished. These data reveal an interaction between caveolin-1 and β-dystroglycan and demonstrate that this association, in concert with anchorage to the actin cytoskeleton, underpins the spatial organization and functional role of caveolae in receptor-mediated Ca2+ release, which is an essential initiator step in smooth muscle contraction.


Journal of Biological Chemistry | 1996

The Role of the Dodecamer Subunit in the Dissociation and Reassembly of the Hexagonal Bilayer Structure of Lumbricus terrestris Hemoglobin

Pawan Sharma; Askar R. Kuchumov; Geneviève Chottard; Philip D. Martin; Joseph S. Wall; Serge N. Vinogradov

The dissociation of the 3500-kDa hexagonal bilayer (HBL) hemoglobin (Hb) of Lumbricus terrestris upon exposure to Gdm salts, urea and the heteropolytungstates [SiWO] (SiW), [NaSbWO] (SbW) and [BaAsWO] (AsW) at neutral pH was followed by gel filtration, SDS-polyacrylamide gel electrophoresis, and scanning transmission electron microscopy. Elution curves were fitted to sums of exponentially modified gaussians to represent the peaks due to undissociated oxyHb, D (200 kDa), T+L (50 kDa), and M (25 kDa) (T = disulfide-bonded trimer of chains a-c, M = chain d, and L = linker chains). OxyHb dissociation decreased in the order Gdm•SCN > Gdm•Cl > urea > Gdm•OAc and AsW > SbW > SiW. Scanning transmission electron microscopy mass mapping of D showed 10-nm particles with masses of 200 kDa, suggesting them to be dodecamers (a+b+c)d. OxyHb dissociations in urea and Gdm•Cl and at alkaline pH could be fitted only as sums of 3 exponentials. The time course of D was bell-shaped, indicating it was an intermediate. Dissociations in SiW and upon conversion to metHb showed only two phases. The kinetic heterogeneity may be due to oxyHb structural heterogeneity. Formation of D was spontaneous during HBL reassembly, which was minimal (≤ 10%) without Group IIA cations. During reassembly, maximal (60%) at 10 mM cation, D occurs at constant levels (15%), implying the dodecamer to be an intermediate.


Journal of Biological Chemistry | 1996

Molecular Shape, Dissociation, and Oxygen Binding of the Dodecamer Subunit of Lumbricus terrestris Hemoglobin

Angelica Krebs; Askar R. Kuchumov; Pawan Sharma; Emory H. Braswell; Peter Zipper; Roy E. Weber; Geneviève Chottard; Serge N. Vinogradov

Small angle x-ray scattering of the 213-kDa dodecamer of Lumbricus terrestris Hb yielded radius of gyration = 3.74 ± 0.01 nm, maximum diameter = 10.59 ± 0.01 nm, and volume = 255 ± 10 nm3, with no difference between the oxy and deoxy states. Sedimentation velocity studies indicate the dodecamer to have a spherical shape and concentration- and Ca2+-dependent equilibria with its constituent subunits, the disulfide-bonded trimer of chains a-c and chain d. Equilibrium sedimentation data were fitted best with a trimer-dodecamer model, ln K4 = 7 (association K in liters3/g3) at 1°C and 4 at 25°C, providing ΔH = −20 kcal/mol and ΔS = 4.4 eu/mol. Oxydodecamer dissociation at pH 8.0, in urea, GdmCl, heteropolytungstate K8[SiW11O39] and of metdodecamer at pH 7, was followed by gel filtration. Elution profiles were fitted with exponentially modified gaussians to represent the three peaks. Two exponentials were necessary to fit all the dissociations except in [SiW11O39]−8. Equilibrium oxygen binding measurements at pH 6.5-8.5, provided P50 = 8.5, 11.5-11.9 and 11.9-13.5 torr, and n50 = 5.2-9.5, 3.2-4.9, and 1.8-2.7 for blood, Hb, and dodecamer, respectively, at pH 7.5, 25°C. P50 was decreased 3- and 2-fold in ~100 mM Ca2+ and Mg2+, respectively, with concomitant but smaller increases in cooperativity.


Molecular Pharmacology | 2013

Phosphodiesterase 4 Inhibitors Augment the Ability of Formoterol to Enhance Glucocorticoid-Dependent Gene Transcription in Human Airway Epithelial Cells: A Novel Mechanism for the Clinical Efficacy of Roflumilast in Severe Chronic Obstructive Pulmonary Disease

Thunicia Moodley; Sylvia M. Wilson; Taruna Joshi; Christopher F. Rider; Pawan Sharma; Dong Yan; Robert Newton; Mark A. Giembycz

Post-hoc analysis of two phase III clinical studies found that the phosphodiesterase 4 (PDE4) inhibitor, roflumilast, reduced exacerbation frequency in patients with severe chronic obstructive pulmonary disease (COPD) who were taking inhaled corticosteroids (ICS) concomitantly, whereas patients not taking ICS derived no such benefit. In contrast, in two different trials also performed in patients with severe COPD, roflumilast reduced exacerbation rates in the absence of ICS, indicating that PDE4 inhibition alone is sufficient for therapeutic activity to be realized. Given that roflumilast is recommended as an “add-on” medication to patients with severe disease who will inevitably be taking a long-acting β2-adrenoceptor agonist (LABA)/ICS combination therapy, we tested the hypothesis that roflumilast augments the ability of glucocorticoids to induce genes with anti-inflammatory activity. Using a glucocorticoid response element (GRE) luciferase reporter transfected into human airway epithelial cells [both bronchial epithelium + adenovirus 12 - SV40 hybrid (BEAS-2B) cells and primary cultures], roflumilast enhanced fluticasone propionate–induced GRE-dependent transcription. Roflumilast also produced a sinistral displacement of the concentration-response curves that described the augmentation of GRE-dependent transcription by the LABA formoterol. In BEAS-2B cells and primary airway epithelia, roflumilast interacted with formoterol in a positive cooperative manner to enhance the expression of several glucocorticoid-inducible genes that have anti-inflammatory potential. We suggest that the ability of roflumilast and formoterol to interact in this way supports the concept that these drugs together may impart clinical benefit beyond that achievable by an ICS alone, a PDE4 inhibitor alone, or an ICS/LABA combination therapy. Roflumilast may, therefore, be especially effective in patients with severe COPD.


Methods in Enzymology | 1994

Preparation and characterization of invertebrate globin complexes.

Serge N. Vinogradov; Pawan Sharma

Publisher Summary The hemoglobins of vertebrates are uniformly intracellular and, with the exception of agnathan hemoglobins, have a heterotetrameric subunit structure. The hemoglobins of the agnathans (jawless cyclostomes) that consist of hagfish and lampreys occur as homopolymers and exhibit oxygenation-linked monomerization. Moreover, hemoglobin is ubiquitous in the vertebrates, being absent only in subantarctic fish of the family Chaenichtydae and in larvae of the European eel Anguilla anguilla . Hemoglobins from invertebrates can be intra- or extracellular and their occurrence is episodic; thus, closely related species living in identical environments may have no hemoglobin, have an intracellular hemoglobin, or have an extracellular hemoglobin. In some cases, intra- and extracellular hemoglobins coexist in the same species. Whenever intracellular hemoglobins are present, they occur in nucleated erythrocytes. Moreover, invertebrate hemoglobins vary widely in molecular size, ranging from single-chain, and myoglobin-like molecules of ∼17 kDa to giant heteromultimeric complexes of up to 10,000 kDa. The majority of intracellular invertebrate hemoglobins are monomeric, many instances of oligomerization to dimers and tetramers and of the formation of heterodimers and heterotetramers are also known.

Collaboration


Dive into the Pawan Sharma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge