Paweł Aleksandrowski
University of Wrocław
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paweł Aleksandrowski.
Geological Magazine | 1997
Paweł Aleksandrowski; Ryszard Kryza; Stanisław Mazur; J. Zaba
The still highly disputable terrane boundaries in the Sudetic segment of the Variscan belt mostly seem to follow major strike-slip faults and shear zones. Their kinematics, expected to place important constraints on the regional structural models, is discussed in some detail. The most conspicuous is the WNW–ESE Intra-Sudetic Fault Zone, separating several different structural units of the West Sudetes. It showed ductile dextral activity and, probably, displacement magnitude of the order of tens to hundreds kilometres, during late Devonian(?) to early Carboniferous times. In the late Carboniferous (to early Permian?), the sense of motion on the Intra-Sudetic Fault was reversed in a semi-brittle to brittle regime, with the left-lateral offset on the fault amounting to single kilometres. The north–south trending Niemcza and north-east–southwest Skrzynka shear zones are left-lateral, ductile features in the eastern part of the West Sudetes. Similarly oriented (northeast–southwest to NNE–SSW) regional size shear zones of as yet undetermined kinematics were discovered in boreholes under Cenozoic cover in the eastern part of the Sudetic foreland (the Niedźwiedź and Nysa-Brzeg shear zones). One of these is expected to represent the northern continuation of the major Stare Mesto Shear Zone in the Czech Republic, separating the geologically different units of the West and East Sudetes. The Rudawy Janowickie Metamorphic Unit, assumed in some reconstructions to comprise a mostly strike-slip terrane boundary, is characterized by ductile fabric developed in a thrusting regime, modified by a superimposed normal-slip extensional deformation. Thrusting-related deformational fabric was locally reoriented prior to the extensional event and shows present-day strike-slip kinematics in one of the sub-units. The Sudetic Boundary Fault, although prominent in the recent structure and topography of the region, was not active as a Variscan strike-slip fault zone. The reported data emphasize the importance of syn-orogenic strike-slip tectonics in the Sudetes. The recognized shear sense is compatible with a strike-slip model of the northeast margin of the Bohemian Massif, in which the Kaczawa and Gory Sowie Units underwent late Devonian–early Carboniferous southeastward long-distance displacement along the Intra-Sudetic Fault Zone from their hypothetical original position within the Northern Phyllite Zone and the Mid-German Crystalline High of the German Variscides, respectively, and were juxtaposed with units of different provenance southwest of the fault. The Intra-Sudetic Fault Zone, together with the Elbe Fault Zone further south, were subsequently cut in the east and their eastern segments were displaced and removed by the younger, early to late Carboniferous, NNE–SSW trending, transpressional Moldanubian–Stare Mesto Shear Zone.
Geological Society, London, Special Publications | 2002
Paweł Aleksandrowski; Stanisław Mazur
Abstract A synthesis of published and new data is used to interpret the Sudetic segment of the Variscan belt as having formed by the accretion of four major and two or three minor terranes. From west to east the major terranes are (1) Lusatia-Izera Terrane, exposing Armorican continental basement reworked by Ordovician plutonism and Late Devonian-Carboniferous collision, showing Saxothuringian affinities; (2) composite Góry Sowie-Kłodzko Terrane characterized by multistage evolution (Silurian subduction, mid- to late Devonian collision, exhumation and extension, Carboniferous deformational overprint), with analogues elsewhere in the Bohemian Massif, Massif Central and Armorica; (3) Moldanubian (Gföhl) Terrane comprising the Orlica-Śnieżnik and Kamieniec massifs, affected by Early Carboniferous high-grade metamorphism and exhumation and (4) Brunovistulian Terrane in the East Sudetes, set up on Avalonian crust and affected by Devonian to late Carboniferous sedimentation, magmatism and tectonism. The main terranes are separated by two smaller ones squeezed along their boundaries: (1) Moravian Terrane, between the Moldanubian and Brunovistulian, deformed during Early Carboniferous collision, and (2) SE Karkonosze Terrane of affinities to the Saxothuringian oceanic realm, sandwiched betwen the Lusatia-Izera and Góry Sowie-Kłodzko (together with Teplá-Barrandian) terranes, subjected to high pressure-metamorphism and tectonized during Late Devonian-Early Carboniferous convergence. The Kaczawa Terrane in the NW, of oceanic accretionary prism features, metamorphosed and deformed during latest Devonian-Early Carboniferous times, may either be a distinct unit unrelated to closure of the Saxothuringian Ocean or represent a continuation of the SE Karkonosze Terrane.
Journal of Structural Geology | 1985
Paweł Aleksandrowski
Abstract A new method of graphic determination of principal stress directions is proposed for slickenside populations produced in anisotropic rocks. Arthauds concept of movement planes is advanced through studying variations in their pattern relative to the changing values of the principal stresses. These variations are recognizable by means of a simple test based on the Bott equation. In contrast to Arthauds method, the proposed procedure is applicable to fault populations resulting from stress fields geometrically reproducible by a triaxial ellipsoid. A field example is given to demonstrate the practical utility of the method.
Transactions of The Royal Society of Edinburgh-earth Sciences | 1999
Paweł Aleksandrowski; Ryszard Kryza; Stanisław Mazur; Christian Pin; Jan Zalasiewicz
The Polish Sudetes on the NE margin of the Bohemian Massif comprise a complex mosaic of pre-Permian basement units, traditionally included in the Variscides. A hypothesis of significant Caledonian orogenesis in this area originated in the 1920s, was subsequently rejected, and then was recently revived in models which invoked Early Palaeozoic to Early-Mid Devonian subduction and continental collision along a proposed extension of the Tornquist suture zone. We reassess the evidence invoked in support of the Caledonian orogeny, such as supposed regional pre-Upper Devonian unconformity, Ordovician bimodal magmatism and radiometric, palaeontological, palaeomagnetic and structural data, and suggest these are either inconclusive or misinterpreted. On the other hand, the Sudetes record Mid?-Late Devonian blueschist metamorphism followed by an Early Carboniferous regional high temperature event, widespread Late Devonian/Early Carboniferous flysch/molasse sedimentation and abundant granite intrusion in the Carboniferous to Early Permian. We discuss the usage of the term ‘Caledonian’ in a plate tectonic context and suggest it should not be used simply to denote Early to Mid-Palaeozoic tectonic activity. The tectonic evolution of the Sudetes was temporally different from, and resulted from convergence of different crustal domains than that of the British-Scandinavian-Pomeranian Caledonides. The Sudetic Palaeozoic sequences most probably developed on Armorican Neoproterozoic crust and in adjacent oceanic(?) domains and, therefore, the Sudetes form part of the Variscan orogenic belt.
Geological Quarterly | 2016
Andrzej Głuszyński; Paweł Aleksandrowski
The Pogorska Wola palaeovalley of combined tectonic and erosional origin dissects the Mesozoic floor of the Carpathian Foredeep Basin to a depth exceeding 1200 m. It formed during Paleogene times presumably due to fluvial and submarine erosion, concentrated along a local pre-Late Badenian graben system. All members of the foredeep’s Badenian-Sarmatian sedimentary fill attain distinctly greater values inside the palaeovalley than on top of elevated plateaux on palaeovalley shoulders. The fill comprises the Early to Late Badenian sub-evaporite Skawina Formation, the laterally equivalent Late Badenian evaporite Krzyzanowice and Wieliczka formations and the supra-evaporite Late Badenian to Early Sarmatian Machow Formation. Over the plateaux and in the highest palaeovalley segment, the evaporites are developed in the sulphate facies Krzyzanowice Formation, whereas in the lower palaeovalley segments chloride-sulphate facies evaporites of the Wieliczka Formation occur. The rock salt-bearing rocks are involved in thrusting and folding at the Carpathian orogenic front, which helps to assess the lateral extent of the Wieliczka Formation in seismic records. The deep palaeotopographic position of the evaporites inside the palaeovalley, combined with their lithological and sedimentary features, point to their formation via subaqueous gravity flow-driven redeposition of originally shallow-water evaporites, preferentially halite-bearing, presumably combined with precipitation from sulphate and chloride brines at the palaeovalley floor. Both the redeposited sediments and the brines must have come from the adjacent plateaux and from a thrust-sheet top basin, approaching from the south on top of the Cretaceous-Paleogene Carpathian flysch thrust wedge
Geological Quarterly | 2010
Stanisław Mazur; Paweł Aleksandrowski; Ryszard Kryza; Teresa Oberc-Dziedzic
International Journal of Earth Sciences | 2001
Stanisław Mazur; Paweł Aleksandrowski
International Journal of Earth Sciences | 2010
Stanisław Mazur; Paweł Aleksandrowski; Krzysztof Turniak; L. Krzemiński; K. Mastalerz; A. Górecka-Nowak; L. Kurowski; Piotr Krzywiec; Andrzej Żelaźniewicz; Mark Fanning
Lithos | 2005
Stanisław Mazur; Paweł Aleksandrowski; Jacek Szczepański
Tectonics | 2010
Iwona Sieniawska; Paweł Aleksandrowski; Marta Rauch; Hemin Koyi