Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pawel K. Olszewski is active.

Publication


Featured researches published by Pawel K. Olszewski.


BMC Neuroscience | 2009

Hypothalamic FTO is associated with the regulation of energy intake not feeding reward

Pawel K. Olszewski; Robert Fredriksson; Agnieszka M. Olszewska; Olga Stephansson; Johan Alsiö; Katarzyna J. Radomska; Allen S. Levine; Helgi B. Schiöth

BackgroundPolymorphism in the FTO gene is strongly associated with obesity, but little is known about the molecular bases of this relationship. We investigated whether hypothalamic FTO is involved in energy-dependent overconsumption of food. We determined FTO mRNA levels in rodent models of short- and long-term intake of palatable fat or sugar, deprivation, diet-induced increase in body weight, baseline preference for fat versus sugar as well as in same-weight animals differing in the inherent propensity to eat calories especially upon availability of diverse diets, using quantitative PCR. FTO gene expression was also studied in organotypic hypothalamic cultures treated with anorexigenic amino acid, leucine. In situ hybridization (ISH) was utilized to study FTO signal in reward- and hunger-related sites, colocalization with anorexigenic oxytocin, and c-Fos immunoreactivity in FTO cells at initiation and termination of a meal.ResultsDeprivation upregulated FTO mRNA, while leucine downregulated it. Consumption of palatable diets or macronutrient preference did not affect FTO expression. However, the propensity to ingest more energy without an effect on body weight was associated with lower FTO mRNA levels. We found that 4-fold higher number of FTO cells displayed c-Fos at meal termination as compared to initiation in the paraventricular and arcuate nuclei of re-fed mice. Moreover, ISH showed that FTO is present mainly in hunger-related sites and it shows a high degree of colocalization with anorexigenic oxytocin.ConclusionWe conclude that FTO mRNA is present mainly in sites related to hunger/satiation control; changes in hypothalamic FTO expression are associated with cues related to energy intake rather than feeding reward. In line with that, neurons involved in feeding termination express FTO. Interestingly, baseline FTO expression appears linked not only with energy intake but also energy metabolism.


Brain Research Reviews | 2010

Molecular mechanisms underlying anorexia nervosa : focus on human gene association studies and systems controlling food intake

Mathias Rask-Andersen; Pawel K. Olszewski; Allen S. Levine; Helgi B. Schiöth

Anorexia nervosa (AN) is a complex multi-factorial disease with high heritability. The psychological AN symptoms are poorly connected with specific molecular mechanisms. Here we review the molecular basis of AN with the focus on human genetic association studies; we put these in the experimental biological context with emphasis on molecular systems controlling food intake and body weight in a direct or indirect manner. We systematically searched for human genetic studies related to AN and grouped data into main categories/systems reflecting their major known roles: (1) Systems related to mental disorders (serotonin, brain-derived neurotrophic factor (BDNF), norepinephrine (NE), glutamate (NMDA) receptor and SK3 channel, KCCN3). (2) Hunger regulatory systems (leptin, AGRP, MSH, melanocortin 4 receptor (MC4R), NPY, ghrelin, cholecystokinin (CCK). (3) Feeding motivation- and reward-related systems (opioids, OPRD1, cannabinoids (anandamide (AEA), THC, CBR1), dopamine, DRD2, DRD3, DRD4, catecholamine-O-methyl transferase (COMT). (4) Systems regulating energy metabolism (uncoupling proteins 2 and 3 (UCP2 and UCP3). (5) Neuroendocrine systems with emphasis on sex hormones (estrogen receptor-beta (ESR2). (6) The immune system and inflammatory response (tumor necrosis factor-alpha (TNF-alpha)). Overall, we found that in total 175 association studies have been performed on AN cohorts on 128 different polymorphisms related to 43 genes. We review the strongest associations, identify some genes that have an important role in regulating BMI whose possible relationship to AN has not been investigated and discuss the potential targets for pharmacological interventions.


BMC Medical Genetics | 2010

The obesity gene, TMEM18, is of ancient origin, found in majority of neuronal cells in all major brain regions and associated with obesity in severely obese children

Markus Sällman Almén; Josefin A. Jacobsson; Jafar H. A. Shaik; Pawel K. Olszewski; Jonathan Cedernaes; Johan Alsiö; Smitha Sreedharan; Allen S. Levine; Robert Fredriksson; Claude Marcus; Helgi B. Schiöth

BackgroundTMEM18 is a hypothalamic gene that has recently been linked to obesity and BMI in genome wide association studies. However, the functional properties of TMEM18 are obscure.MethodsThe evolutionary history of TMEM18 was inferred using phylogenetic and bioinformatic methods. The genes expression profile was investigated with real-time PCR in a panel of rat and mouse tissues and with immunohistochemistry in the mouse brain. Also, gene expression changes were analyzed in three feeding-related mouse models: food deprivation, reward and diet-induced increase in body weight. Finally, we genotyped 502 severely obese and 527 healthy Swedish children for two SNPs near TMEM18 (rs6548238 and rs756131).ResultsTMEM18 was found to be remarkably conserved and present in species that diverged from the human lineage over 1500 million years ago. The TMEM18 gene was widely expressed and detected in the majority of cells in all major brain regions, but was more abundant in neurons than other cell types. We found no significant changes in the hypothalamic and brainstem expression in the feeding-related mouse models. There was a strong association for two SNPs (rs6548238 and rs756131) of the TMEM18 locus with an increased risk for obesity (p = 0.001 and p = 0.002).ConclusionWe conclude that TMEM18 is involved in both adult and childhood obesity. It is one of the most conserved human obesity genes and it is found in the majority of all brain sites, including the hypothalamus and the brain stem, but it is not regulated in these regions in classical energy homeostatic models.


Frontiers in Neuroendocrinology | 2012

Feed-forward mechanisms: Addiction-like behavioral and molecular adaptations in overeating

Johan Alsiö; Pawel K. Olszewski; Allen S. Levine; Helgi B. Schiöth

Food reward, not hunger, is the main driving force behind eating in the modern obesogenic environment. Palatable foods, generally calorie-dense and rich in sugar/fat, are thus readily overconsumed despite the resulting health consequences. Important advances have been made to explain mechanisms underlying excessive consumption as an immediate response to presentation of rewarding tastants. However, our understanding of long-term neural adaptations to food reward that oftentimes persist during even a prolonged absence of palatable food and contribute to the reinstatement of compulsive overeating of high-fat high-sugar diets, is much more limited. Here we discuss the evidence from animal and human studies for neural and molecular adaptations in both homeostatic and non-homeostatic appetite regulation that may underlie the formation of a feed-forward system, sensitive to palatable food and propelling the individual from a basic preference for palatable diets to food craving and compulsive, addiction-like eating behavior.


BMC Genomics | 2010

Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression

Smitha Sreedharan; Jafar H. A. Shaik; Pawel K. Olszewski; Allen S. Levine; Helgi B. Schiöth; Robert Fredriksson

BackgroundThe SLC17 family of transporters transports the amino acids: glutamate and aspartate, and, as shown recently, also nucleotides. Vesicular glutamate transporters are found in distinct species, such as C. elegans, but the evolutionary origin of most of the genes in this family has been obscure.ResultsOur phylogenetic analysis shows that the SLC17 family consists of four main phylogenetic clades which were all present before the divergence of the insect lineage. One of these clades has not been previously described and it is not found in vertebrates. The clade containing Slc17a9 had the most restricted evolutionary history with only one member in most species. We detected expression of Slc17a1-17a4 only in the peripheral tissues but not in the CNS, while Slc17a5- Slc17a9 are highly expressed in both the CNS and periphery.ConclusionsThe in situ hybridization studies on vesicular nucleotide transporter revealed high expression throughout the cerebral cortex, certain areas in the hippocampus and in specific nuclei of the hypothalamus and thalamus. Some of the regions with high expression, such as the medial habenula and the dentate gyrus of the hippocampus, are important sites for purinergic neurotransmission. Noteworthy, other areas relying on purine-mediated signaling, such as the molecular layer of the dentate gyrus and the periaqueductal gray, lack or have a very low expression of Slc17a9, suggesting that there could be another nucleotide transporter in these regions.


Peptides | 2009

Complexity of neural mechanisms underlying overconsumption of sugar in scheduled feeding: Involvement of opioids, orexin, oxytocin and NPY

Pawel K. Olszewski; Timothy J. Shaw; Martha K. Grace; Catherine E. Höglund; Robert Fredriksson; Helgi B. Schiöth; Allen S. Levine

A regular daily meal regimen, as opposed to ad libitum consumption, enforces eating at a predefined time and within a short timeframe. Hence, it is important to study food intake regulation in animal feeding models that somewhat reflect this pattern. We investigated the effect of scheduled feeding on the intake of a palatable, high-sugar diet in rats and attempted to define central mechanisms - especially those related to opioid signaling--responsible for overeating sweet foods under such conditions. We found that scheduled access to food, even as challenging as 20 min per day, does not prevent overconsumption of a high-sucrose diet compared to a standard one. An opioid receptor antagonist, naloxone, at 0.3-1 mg/kg b. wt., decreased the intake of the sweet diet, whereas higher doses were required to reduce bland food consumption. Real-time PCR analysis revealed that expression of hypothalamic and brainstem genes encoding opioid peptides and receptors did not differ in sucrose versus regular diet-fed rats, which suggests that scheduled intake of sweet food produces only a transient change in the opioid tone. Intake of sugar was also associated with upregulation of orexin and oxytocin genes in the hypothalamus and NPY in the brainstem. We conclude that scheduled consumption of sugar diets is associated with activity of a complex network of neuroregulators involving opioids, orexin, oxytocin and NPY.


Brain Research | 2000

Fos expression in feeding-related brain areas following intracerebroventricular administration of orphanin FQ in rats

Pawel K. Olszewski; Charles J. Billington; Allen S. Levine

While the influence of orphanin FQ (OFQ) on the regulation of food intake has been substantiated, little is known about feeding-related brain regions that mediate OFQ-induced feeding. To further investigate this, we injected OFQ intracerebroventricularly and evaluated c-Fos immunoreactivity in brain areas thought to be involved in the regulation of food intake. Altered c-Fos expression as a consequence of OFQ injection was observed in the nucleus of the solitary tract, paraventricular nucleus of the hypothalamus, supraoptic nucleus, central nucleus of amygdala, lateral septal nucleus and lateral habenular nucleus. Presumably, OFQ modulates food ingestion through its action on these brain regions, most probably by activating feeding signals as well as suppressing satiety mechanisms.


Peptides | 2006

Functional interaction between nociceptin/orphanin FQ and α-melanocyte-stimulating hormone in the regulation of feeding

Eric M. Bomberg; Martha K. Grace; Allen S. Levine; Pawel K. Olszewski

Nociceptin/orphanin FQ (N/OFQ), an endogenous agonist of the opioid N/OFQ (NOP) receptor, increases food intake when administered centrally. As N/OFQ is part of a larger neural network that governs consummatory behavior, presumably its orexigenic properties stem from interplay with other neuropeptidergic components of the feeding-related circuitry. One such peptide may be the ligand of the melanocortin-3 and -4 receptors, alpha-melanocyte-stimulating hormone (alpha-MSH), which is known to inhibit food intake. The aim of the present study was to establish whether there is a functional interaction between N/OFQ and alpha-MSH in the regulation of feeding. By using double immunostaining for c-Fos and alpha-MSH, we found that intracerebroventricular (i.c.v.) injection of N/OFQ at a 10nmol dose that moderately prolongs deprivation-induced food intake in rats, decreases activation of alpha-MSH neurons involved in feeding termination. However, i.c.v. injections of alpha-MSH at doses previously established to reduce deprivation-induced feeding, do not decrease hyperphagia generated by N/OFQ in ad libitum-fed animals. Our results suggest that while alpha-MSH does not appear to modify the orexigenic response to N/OFQ in sated rats, the NOP receptor ligand promotes a decrease in activation of neurons synthesizing the anorexigenic peptide, alpha-MSH, at the time of re-feeding. Thus, to some degree, the stimulatory effect of N/OFQ on consumption may arise from this peptides inhibitory influence on activity of anorexigenic pathways containing alpha-MSH.


Journal of Neuroendocrinology | 2016

Oxytocin: A Conditional Anorexigen whose Effects on Appetite Depend on the Physiological, Behavioural and Social Contexts.

Pawel K. Olszewski; Anica Klockars; Allen S. Levine

Central oxytocin suppresses appetite. Neuronal activity and the release of oxytocin coincide with satiation, as well as with adverse events (e.g. hyperosmolality, toxicity or excessive stomach distension) that necessitate an immediate termination of eating behaviour. Oxytocin also decreases consumption driven by reward, especially as derived from ingesting carbohydrates and sweet tastants. This review summarises current knowledge of the role of oxytocin in food intake regulation and highlights a growing body of evidence showing that oxytocin is a conditional anorexigen [i.e. its effects on appetite differ significantly with respect to certain (patho)physiological, behavioural and social contexts].


Frontiers in Endocrinology | 2015

Central oxytocin and food intake: focus on macronutrient-driven reward.

Anica Klockars; Allen S. Levine; Pawel K. Olszewski

Centrally acting oxytocin (OT) is known to terminate food consumption in response to excessive stomach distension, increase in salt loading, and presence of toxins. Hypothalamic-hindbrain OT pathways facilitate these aspects of OT-induced hypophagia. However, recent discoveries have implicated OT in modifications of feeding via reward circuits: OT has been found to differentially affect consumption of individual macronutrients in choice and no-choice paradigms. In this mini-review, we focus on presenting and interpreting evidence that defines OT as a key component of mechanisms that reduce eating for pleasure and shape macronutrient preferences. We also provide remarks on challenges in integrating the knowledge on physiological and pathophysiological states in which both OT activity and macronutrient preferences are affected.

Collaboration


Dive into the Pawel K. Olszewski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge