Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pawel Mroz is active.

Publication


Featured researches published by Pawel Mroz.


Nature Reviews Cancer | 2006

Photodynamic therapy and anti-tumour immunity

Ana P. Castano; Pawel Mroz; Michael R. Hamblin

Photodynamic therapy (PDT) uses non-toxic photosensitizers and harmless visible light in combination with oxygen to produce cytotoxic reactive oxygen species that kill malignant cells by apoptosis and/or necrosis, shut down the tumour microvasculature and stimulate the host immune system. In contrast to surgery, radiotherapy and chemotherapy that are mostly immunosuppressive, PDT causes acute inflammation, expression of heat-shock proteins, invasion and infiltration of the tumour by leukocytes, and might increase the presentation of tumour-derived antigens to T cells.


Cancers | 2011

Cell Death Pathways in Photodynamic Therapy of Cancer

Pawel Mroz; Anastasia Yaroslavsky; Gitika B. Kharkwal; Michael R. Hamblin

Photodynamic therapy (PDT) is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS) and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases) are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2) are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT.


Antimicrobial Agents and Chemotherapy | 2006

Protease-Stable Polycationic Photosensitizer Conjugates between Polyethyleneimine and Chlorin(e6) for Broad-Spectrum Antimicrobial Photoinactivation

George P. Tegos; Masahiro Anbe; Changming Yang; Tatiana N. Demidova; Minahil Satti; Pawel Mroz; Sumbul Janjua; Faten Gad; Michael R. Hamblin

ABSTRACT We previously showed that covalent conjugates between poly-l-lysine and chlorin(e6) were efficient photosensitizers (PS) of both gram-positive and gram-negative bacteria. The polycationic molecular constructs increased binding and penetration of the PS into impermeable gram-negative cells. We have now prepared a novel set of second-generation polycationic conjugates between chlorin(e6) and three molecular forms of polyethyleneimine (PEI): a small linear, a small cross-linked, and a large cross-linked molecule. The conjugates were characterized by high-pressure liquid chromatography and tested for their ability to kill a panel of pathogenic microorganisms, the gram-positive Staphylococcus aureus and Streptococcus pyogenes, the gram-negative Escherichia coli and Pseudomonas aeruginosa, and the yeast Candida albicans, after exposure to low levels of red light. The large cross-linked molecule efficiently killed all organisms, while the linear conjugate killed gram-positive bacteria and C. albicans. The small cross-linked conjugate was the least efficient antimicrobial PS and its remarkably low activity could not be explained by reduced photochemical quantum yield or reduced cellular uptake. In contrast to polylysine conjugates, the PEI conjugates were resistant to degradation by proteases such as trypsin that hydrolyze lysine-lysine peptide bonds, The advantage of protease stability combined with the ready availability of PEI suggests these molecules may be superior to polylysine-PS conjugates for photodynamic therapy of localized infections.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model

Ana P. Castano; Pawel Mroz; Mei X. Wu; Michael R. Hamblin

Photodynamic therapy (PDT) is a modality for the treatment of cancer involving excitation of nontoxic photosensitizers with harmless visible light-producing cytotoxic reactive oxygen species. PDT causes apoptosis and necrosis of tumor cells, destruction of the tumor blood supply, and activation of the immune system. The objective of this study was to compare in an animal model of metastatic cancer PDT alone and PDT combined with low-dose cyclophosphamide (CY) a treatment that has been proposed to deplete regulatory T cells (T-regs) and increase the immune response to some tumors. We used J774 tumors (a highly metastatic reticulum cell sarcoma line) and PDT with benzoporphyrin derivative monoacid ring A, verteporfin for injection (BPD; 1-mg/kg injected i.v. followed after 15 min by 150 J/cm2 of 690-nm light). CY (50 or 150 mg/kg i.p.) was injected 48 h before light delivery. PDT alone led to tumor regressions and a survival advantage but no permanent cures were obtained. BPD–PDT in combination with low-dose CY (but not high-dose CY) led to 70% permanent cures. Low-dose CY alone gave no permanent cures but did provide a survival advantage and was shown to reduce CD4+FoxP3+ T-regs in lymph nodes, whereas high-dose CY reduced other lymphocyte classes as well. Cured animals were rechallenged with J774 cells, and the tumors were rejected in 71% of mice. Cured mice had tumor-specific T cells in spleens as determined by a 51Cr release assay. We conclude that low-dose CY depletes T-regs and potentiates BPD–PDT, leading to tumor cures and memory immunity.


Expert Review of Clinical Immunology | 2011

Stimulation of anti-tumor immunity by photodynamic therapy

Pawel Mroz; Javad T. Hashmi; Ying Ying Huang; Norbert Lange; Michael R. Hamblin

Photodynamic therapy (PDT) is a rapidly developing cancer treatment that utilizes the combination of nontoxic dyes and harmless visible light to destroy tumors by generating reactive oxygen species. PDT produces tumor-cell destruction in the context of acute inflammation that acts as a ‘danger signal’ to the innate immune system. Activation of the innate immune system increases the priming of tumor-specific T lymphocytes that have the ability to recognize and destroy distant tumor cells and, in addition, lead to the development of an immune memory that can combat recurrence of the cancer at a later point in time. PDT may be also successfully combined with immunomodulating strategies that are capable of overcoming or bypassing the escape mechanisms employed by the progressing tumor to evade immune attack. This article will cover the role of the immune response in PDT anti-tumor effectiveness. It will highlight the milestones in the development of PDT-mediated anti-tumor immunity and emphasize the combination strategies that may improve this therapy.


Antimicrobial Agents and Chemotherapy | 2010

Stable Synthetic Cationic Bacteriochlorins as Selective Antimicrobial Photosensitizers

Liyi Huang; Ying-Ying Huang; Pawel Mroz; George P. Tegos; Timur Zhiyentayev; Sulbha K. Sharma; Zongshun Lu; Thiagarajan Balasubramanian; Michael Krayer; Christian Ruzié; Eunkyung Yang; Hooi Ling Kee; Christine Kirmaier; James R. Diers; David F. Bocian; Dewey Holten; Jonathan S. Lindsey; Michael R. Hamblin

ABSTRACT Photodynamic inactivation is a rapidly developing antimicrobial treatment that employs a nontoxic photoactivatable dye or photosensitizer in combination with harmless visible light to generate reactive oxygen species that are toxic to cells. Tetrapyrroles (e.g., porphyrins, chlorins, bacteriochlorins) are a class of photosensitizers that exhibit promising characteristics to serve as broad-spectrum antimicrobials. In order to bind to and efficiently penetrate into all classes of microbial cells, tetrapyrroles should have structures that contain (i) one or more cationic charge(s) or (ii) a basic group. In this report, we investigate the use of new stable synthetic bacteriochlorins that have a strong absorption band in the range 720 to 740 nm, which is in the near-infrared spectral region. Four bacteriochlorins with 2, 4, or 6 quaternized ammonium groups or 2 basic amine groups were compared for light-mediated killing against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli), and a dimorphic fungal yeast (Candida albicans). Selectivity was assessed by determining phototoxicity against human HeLa cancer cells under the same conditions. All four compounds were highly active (6 logs of killing at 1 μM or less) against S. aureus and showed selectivity for bacteria over human cells. Increasing the cationic charge increased activity against E. coli. Only the compound with basic groups was highly active against C. albicans. Supporting photochemical and theoretical characterization studies indicate that (i) the four bacteriochlorins have comparable photophysical features in homogeneous solution and (ii) the anticipated redox characteristics do not correlate with cell-killing ability. These results support the interpretation that the disparate biological activities observed stem from cellular binding and localization effects rather than intrinsic electronic properties. These findings further establish cationic bacteriochlorins as extremely active and selective near-infrared activated antimicrobial photosensitizers, and the results provide fundamental information on structure-activity relationships for antimicrobial photosensitizers.


Cancer Research | 2009

Proteasome Inhibition Potentiates Antitumor Effects of Photodynamic Therapy in Mice through Induction of Endoplasmic Reticulum Stress and Unfolded Protein Response

Angelika Szokalska; Marcin Makowski; Dominika Nowis; Grzegorz M. Wilczynski; Marek Kujawa; Cezary Wójcik; Izabela Młynarczuk-Biały; Pawel Salwa; Jacek Bil; Sylwia Janowska; Patrizia Agostinis; Tom Verfaillie; Marek Bugajski; Jan Gietka; Tadeusz Issat; Eliza Glodkowska; Piotr Mrowka; Tomasz Stoklosa; Michael R. Hamblin; Pawel Mroz; Marek Jakóbisiak; Jakub Golab

Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic activity toward tumor cells by inducing production of reactive oxygen species such as singlet oxygen. PDT leads to oxidative damage of cellular macromolecules, including proteins that undergo multiple modifications such as fragmentation, cross-linking, and carbonylation that result in protein unfolding and aggregation. Because the major mechanism for elimination of carbonylated proteins is their degradation by proteasomes, we hypothesized that a combination of PDT with proteasome inhibitors might lead to accumulation of carbonylated proteins in endoplasmic reticulum (ER), aggravated ER stress, and potentiated cytotoxicity toward tumor cells. We observed that Photofrin-mediated PDT leads to robust carbonylation of cellular proteins and induction of unfolded protein response. Pretreatment of tumor cells with three different proteasome inhibitors, including bortezomib, MG132, and PSI, gave increased accumulation of carbonylated and ubiquitinated proteins in PDT-treated cells. Proteasome inhibitors effectively sensitized tumor cells of murine (EMT6 and C-26) as well as human (HeLa) origin to PDT-mediated cytotoxicity. Significant retardation of tumor growth with 60% to 100% complete responses was observed in vivo in two different murine tumor models (EMT6 and C-26) when PDT was combined with either bortezomib or PSI. Altogether, these observations indicate that combination of PDT with proteasome inhibitors leads to potentiated antitumor effects. The results of these studies are of immediate clinical application because bortezomib is a clinically approved drug that undergoes extensive clinical evaluations for the treatment of solid tumors.


PLOS ONE | 2010

Photodynamic Therapy of Tumors Can Lead to Development of Systemic Antigen-Specific Immune Response

Pawel Mroz; Angelika Szokalska; Mei X. Wu; Michael R. Hamblin

Background The mechanism by which the immune system can effectively recognize and destroy tumors is dependent on recognition of tumor antigens. The molecular identity of a number of these antigens has recently been identified and several immunotherapies have explored them as targets. Photodynamic therapy (PDT) is an anti-cancer modality that uses a non-toxic photosensitizer and visible light to produce cytotoxic reactive oxygen species that destroy tumors. PDT has been shown to lead to local destruction of tumors as well as to induction of anti-tumor immune response. Methodology/Principal Findings We used a pair of equally lethal BALB/c colon adenocarcinomas, CT26 wild-type (CT26WT) and CT26.CL25 that expressed a tumor antigen, β-galactosidase (β-gal), and we treated them with vascular PDT. All mice bearing antigen-positive, but not antigen-negative tumors were cured and resistant to rechallenge. T lymphocytes isolated from cured mice were able to specifically lyse antigen positive cells and recognize the epitope derived from beta-galactosidase antigen. PDT was capable of destroying distant, untreated, established, antigen-expressing tumors in 70% of the mice. The remaining 30% escaped destruction due to loss of expression of tumor antigen. The PDT anti-tumor effects were completely abrogated in the absence of the adaptive immune response. Conclusion Understanding the role of antigen-expression in PDT immune response may allow application of PDT in metastatic as well as localized disease. To the best of our knowledge, this is the first time that PDT has been shown to lead to systemic, antigen- specific anti-tumor immunity.


Cancer Letters | 2009

Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: Role of molecular charge, central metal and hydroxyl radical production

Pawel Mroz; Jayeeta Bhaumik; Dilek Kiper Dogutan; Zarmeneh Aly; Zahra Kamal; Laiqua Khalid; Hooi Ling Kee; David F. Bocian; Dewey Holten; Jonathan S. Lindsey; Michael R. Hamblin

The in vitro photodynamic therapy activity of four imidazole-substituted metalloporphyrins has been studied using human (HeLa) and mouse (CT26) cancer cell lines: an anionic Zn porphyrin and a homologous series of three cationic Zn, Pd or InCl porphyrins. A dramatic difference in phototoxicity was found: Pd cationic>InCl cationic>Zn cationic>Zn anionic. HeLa cells were more susceptible than CT26 cells. Induction of apoptosis was demonstrated using a fluorescent caspase assay. The anionic Zn porphyrin localized in lysosomes while the cationic Zn porphyrin localized in lysosomes and mitochondria, as assessed by fluorescence microscopy. Studies using fluorescent probes suggested that the cationic Pd porphyrin produced more hydroxyl radicals as the reactive oxygen species. Thus, the cationic Pd porphyrin has high potential as a photosensitizer and gives insights into characteristics for improved molecular designs.


The FASEB Journal | 2010

Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy

Pawel Mroz; Ying-Ying Huang; Angelika Szokalska; Timur Zhiyentayev; Sahar Janjua; Artemissia-Phoebe A.-P. Nifli; Margaret E. Sherwood; Christian Ruzié; K. Eszter Borbas; Dazhong Fan; Michael Krayer; Thiagarajan Balasubramanian; Eunkyung Yang; Hooi Ling Kee; Christine Kirmaier; James R. Diers; David F. Bocian; Dewey Holten; Jonathan S. Lindsey; Michael R. Hamblin

Cutaneous malignant melanoma remains a therapeutic challenge, and patients with advanced disease have limited survival. Photodynamic therapy (PDT) has been successfully used to treat many malignancies, and it may show promise as an antimelanoma modality. However, high melanin levels in melanomas can adversely affect PDT effectiveness. Herein the extent of melanin contribution to melanoma resistance to PDT was investigated in a set of melanoma cell lines that markedly differ in the levels of pigmentation;3 new bacteriochlorins successfully overcame the resistance. Cell killing studies determined that bacteriochlorins are superior at (LD50≈0.1 µM) when compared with controls such as the FDA‐approved Photofrin (LD50≈10 µM) and clinically tested LuTex (LD50≈=1 µM). The melanin content affects PDT effectiveness, but the degree of reduction is significantly lower for bacteriochlorins than for Photofrin. Microscopy reveals that the least effective bacteriochlorin localizes predominantly in lysosomes, while the most effective one preferentially accumulates in mitochondria. Interestingly all bacteriochlorins accumulate in melanosomes, and subsequent illumination leads to melanosomal damage shown by electron microscopy. Fluorescent probes show that the most effective bacteriochlorin produces significantly higher levels of hydroxyl radicals, and this is consistent with the redox properties suggested by molecular‐orbital calculations. The best in vitro performing bacteriochlorin was tested in vivo in a mouse melanoma model using spectrally resolved fluorescence imaging and provided significant survival advantage with 20% of cures (P<0.01).—Mroz, P., Huang, Y.‐Y., Szokalska, A., Zhiyentayev, T., Janjua, S., Nifli, A.‐P., Sherwood, M. E., Ruzié, C., Borbas, K. E., Fan, D., Krayer, M., Balasubramanian, T., Yang, E., Kee, H. L., Kirmaier, C., Diers, J. R., Bocian, D. F., Holten, D., Lindsey, J. S., Hamblin, M. R. Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. FASEB J. 24, 3160–3170 (2010). www.fasebj.org

Collaboration


Dive into the Pawel Mroz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan S. Lindsey

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dewey Holten

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Hooi Ling Kee

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge