Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pawel R. Kiela is active.

Publication


Featured researches published by Pawel R. Kiela.


American Journal of Physiology-cell Physiology | 1997

Functional and molecular characterization of NHE3 expression during ontogeny in rat jejunal epithelium

James F. Collins; Hua Xu; Pawel R. Kiela; Jiamin Zeng; Fayez K. Ghishan

Ontogenic changes occur in intestinal brush-border membrane vesicle (BBMV) Na+/H+ exchange activity. The present studies were designed to investigate ontogenic changes in Na+/H+ exchanger (NHE) isoform 3 in rat jejunum. pH-dependent Na+ uptake was assayed in four age groups of rats in the presence of 0, 50, or 800 microM HOE-694, a specific NHE inhibitor with differential sensitivities for NHE2 [inhibition constant (Ki) = 5 microM in PS120 fibroblasts] and NHE3 (Ki = 650 microM). Results showed that NHE2 and NHE3 contribute to basal BBMV uptake at all ages. Uptake levels were highest in 6-wk-old rats, lower in adult rats, and lowest in 2-wk-old (suckling) and 3-wk-old (weanling) rats, NHE3 contribution ranged from 92% at 6 wk of age to 59% at 2 and 3 wk of age. NHE3 inhibition by 800 microM HOE-694 was 38-45%. Statistical analysis showed that HOE-694 had a significant effect at both concentrations at all ages and that differences were present between all ages except 2- and 3-wk rats (at all HOE-694 concentrations). Northern blot analyses of jejunal mucosa showed lowest NHE3 mRNA levels in 2-wk animals and higher levels in all other age groups. Polyclonal antibodies were developed against an NHE3 COOH-terminal fusion protein, and antiserum was characterized with NHE3-transfected PS120 cells and by immunohistochemistry. Western blot analyses showed lowest protein levels in 2-wk animals and higher levels in the other ages. Suckling rats were subcutaneously injected with methylprednisone (MP) for 2 days and killed 1 day later. Northern blot analyses showed a twofold increase in NHE3 mRNA expression with MP treatment. Immunoblot analyses showed a 2.5-fold increase in NHE3 immunoreactive protein levels with MP injection. Overall, these data suggest that NHE3 is regulated during ontogeny and that ontogenic changes are most apparent around the time of weaning. Furthermore, the data suggest that NHE3 is regulated at transcriptional and posttranscriptional levels during mammalian intestinal development.Ontogenic changes occur in intestinal brush-border membrane vesicle (BBMV) Na+/H+exchange activity. The present studies were designed to investigate ontogenic changes in Na+/H+exchanger (NHE) isoform 3 in rat jejunum. pH-dependent Na+ uptake was assayed in four age groups of rats in the presence of 0, 50, or 800 μM HOE-694, a specific NHE inhibitor with differential sensitivities for NHE2 [inhibition constant ( K i) = 5 μM in PS120 fibroblasts] and NHE3 ( K i = 650 μM). Results showed that NHE2 and NHE3 contribute to basal BBMV uptake at all ages. Uptake levels were highest in 6-wk-old rats, lower in adult rats, and lowest in 2-wk-old (suckling) and 3-wk-old (weanling) rats. NHE3 contribution ranged from 92% at 6 wk of age to 59% at 2 and 3 wk of age. NHE3 inhibition by 800 μM HOE-694 was 38-45%. Statistical analysis showed that HOE-694 had a significant effect at both concentrations at all ages and that differences were present between all ages except 2- and 3-wk rats (at all HOE-694 concentrations). Northern blot analyses of jejunal mucosa showed lowest NHE3 mRNA levels in 2-wk animals and higher levels in all other age groups. Polyclonal antibodies were developed against an NHE3 COOH-terminal fusion protein, and antiserum was characterized with NHE3-transfected PS120 cells and by immunohistochemistry. Western blot analyses showed lowest protein levels in 2-wk animals and higher levels in the other ages. Suckling rats were subcutaneously injected with methylprednisone (MP) for 2 days and killed 1 day later. Northern blot analyses showed a twofold increase in NHE3 mRNA expression with MP treatment. Immunoblot analyses showed a 2.5-fold increase in NHE3 immunoreactive protein levels with MP injection. Overall, these data suggest that NHE3 is regulated during ontogeny and that ontogenic changes are most apparent around the time of weaning. Furthermore, the data suggest that NHE3 is regulated at transcriptional and posttranscriptional levels during mammalian intestinal development.


Journal of Immunology | 2012

Dendritic Cell-Specific Disruption of TGF-β Receptor II Leads to Altered Regulatory T Cell Phenotype and Spontaneous Multiorgan Autoimmunity

Rajalakshmy Ramalingam; Claire B. Larmonier; Robert D. Thurston; Monica T. Midura-Kiela; Song Guo Zheng; Fayez K. Ghishan; Pawel R. Kiela

In vitro data and transgenic mouse models suggest a role for TGF-β signaling in dendritic cells (DCs) to prevent autoimmunity primarily through maintenance of DCs in their immature and tolerogenic state characterized by low expression of MHC class II (MHCII) and costimulatory molecules and increased expression of IDO, among others. To test whether a complete lack of TGF-β signaling in DCs predisposes mice to spontaneous autoimmunity and to verify the mechanisms implicated previously in vitro, we generated conditional knockout (KO) mice with Cre-mediated DC-specific deletion of Tgfbr2 (DC-Tgfbr2 KO). DC-Tgfbr2 KO mice die before 15 wk of age with multiorgan autoimmune inflammation and spontaneous activation of T and B cells. Interestingly, there were no significant differences in the expression of MHCII, costimulatory molecules, or IDO in secondary lymphoid organ DCs, although Tgfbr2-deficient DCs were more proinflammatory in vitro and in vivo. DC-Tgfbr2 KO showed attenuated Foxp3 expression in regulatory T cells (Tregs) and abnormal expansion of CD25−Foxp3+ Tregs in vivo. Tgfbr2-deficient DCs secreted elevated levels of IFN-γ and were not capable of directing Ag-specific Treg conversion unless in the presence of anti–IFN-γ blocking Ab. Adoptive transfer of induced Tregs into DC-Tgfbr2 KO mice partially rescued the phenotype. Therefore, in vivo, TGF-β signaling in DCs is critical in the control of autoimmunity through both Treg-dependent and -independent mechanisms, but it does not affect MHCII and costimulatory molecule expression.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases

Fayez K. Ghishan; Pawel R. Kiela

Chronic inflammatory disorders such as inflammatory bowel diseases (IBDs) affect bone metabolism and are frequently associated with the presence of osteopenia, osteoporosis, and increased risk of fractures. Although several mechanisms may contribute to skeletal abnormalities in IBD patients, inflammation and inflammatory mediators such as TNF, IL-1β, and IL-6 may be the most critical. It is not clear whether the changes in bone metabolism leading to decreased mineral density are the result of decreased bone formation, increased bone resorption, or both, with varying results reported in experimental models of IBD and in pediatric and adult IBD patients. New data, including our own, challenge the conventional views, and contributes to the unraveling of an increasingly complex network of interactions leading to the inflammation-associated bone loss. Since nutritional interventions (dietary calcium and vitamin D supplementation) are of limited efficacy in IBD patients, understanding the pathophysiology of osteopenia and osteoporosis in Crohns disease and ulcerative colitis is critical for the correct choice of available treatments or the development of new targeted therapies. In this review, we discuss current concepts explaining the effects of inflammation, inflammatory mediators and their signaling effectors on calcium and phosphate homeostasis, osteoblast and osteoclast function, and the potential limitations of vitamin D used as an immunomodulator and anabolic hormone in IBD.


Gastroenterology | 2010

Tumor Necrosis Factor and Interferon-γ Down-regulate Klotho in Mice With Colitis

Robert D. Thurston; Claire B. Larmonier; Pawel Majewski; Rajalakshmy Ramalingam; Monica T. Midura-Kiela; Daniel Laubitz; Alain Vandewalle; David G. Besselsen; Marcus Mühlbauer; Christian Jobin; Pawel R. Kiela; Fayez K. Ghishan

BACKGROUND & AIMS Klotho (KL) is an anti-inflammatory protein that protects the endothelium from nitric oxide (NO)-induced dysfunction, reduces the expression of endothelial adhesion molecules, and potentially regulates T-cell functions. KL deficiency leads to premature senescence and impaired Ca2+/Pi homeostasis, which can lead to inflammatory bowel disease (IBD)-associated osteopenia/osteoporosis. We investigated the changes in renal expression of Kl as a consequence of colitis. METHODS We studied 3 mouse models of IBD: colitis induced by trinitrobenzene sulfonic acid, colitis induced by microflora (in gnotobiotic interleukin-10(-/-)), and colitis induced by adoptive transfer of CD4(+)CD45RB(high) T cells. Effects of the tumor necrosis factor (TNF) and interferon (IFN)-gamma on Kl expression and the activity of its promoter were examined in renal epithelial cells (mpkDCT4 and mIMCD3). RESULTS Renal expression of Kl messenger RNA (mRNA) and protein was reduced in all 3 models of IBD. Reduced level of KL correlated with the severity of colitis; the effect was reversed by neutralizing antibodies against TNF. In vitro, TNF inhibited Kl expression, an effect potentiated by IFN-gamma. The combination of TNF and IFN-gamma increased expression of inducible nitric oxide synthase (iNOS) and increased NO production. The effect of IFN-gamma was reproduced by exposure to an NO donor and reversed by the iNOS inhibitor. In cells incubated with TNF and/or IFN-gamma, Kl mRNA stability was unaffected, whereas Kl promoter activity was reduced, indicating that these cytokines regulate Kl at the transcriptional level. CONCLUSIONS The down-regulation of KL that occurs during inflammation might account for the extraintestinal complications such as abnormalities in bone homeostasis that occur in patients with IBD.


Inflammatory Bowel Diseases | 2011

Modulation of neutrophil motility by curcumin: Implications for inflammatory bowel disease

Claire B. Larmonier; Monica T. Midura-Kiela; Rajalakshmy Ramalingam; Daniel Laubitz; Nona Janikashvili; Nicolas Larmonier; Fayez K. Ghishan; Pawel R. Kiela

Background: Neutrophils (PMN) are the first cells recruited at the site of inflammation. They play a key role in the innate immune response by recognizing, ingesting, and eliminating pathogens and participate in the orientation of the adaptive immune responses. However, in inflammatory bowel disease (IBD) transepithelial neutrophil migration leads to an impaired epithelial barrier function, perpetuation of inflammation, and tissue destruction via oxidative and proteolytic damage. Curcumin (diferulolylmethane) displays a protective role in mouse models of IBD and in human ulcerative colitis, a phenomenon consistently accompanied by a reduced mucosal neutrophil infiltration. Methods: We investigated the effect of curcumin on mouse and human neutrophil polarization and motility in vitro and in vivo. Results: Curcumin attenuated lipopolysaccharide (LPS)‐stimulated expression and secretion of macrophage inflammatory protein (MIP)‐2, interleukin (IL)‐1β, keratinocyte chemoattractant (KC), and MIP‐1α in colonic epithelial cells (CECs) and in macrophages. Curcumin significantly inhibited PMN chemotaxis against MIP‐2, KC, or against conditioned media from LPS‐treated macrophages or CEC, a well as the IL‐8‐mediated chemotaxis of human neutrophils. At nontoxic concentrations, curcumin inhibited random neutrophil migration, suggesting a direct effect on neutrophil chemokinesis. Curcumin‐mediated inhibition of PMN motility could be attributed to a downregulation of PI3K activity, AKT phosphorylation, and F‐actin polymerization at the leading edge. The inhibitory effect of curcumin on neutrophil motility was further demonstrated in vivo in a model of aseptic peritonitis. Conclusions: Our results indicate that curcumin interferes with colonic inflammation partly through inhibition of the chemokine expression and through direct inhibition of neutrophil chemotaxis and chemokinesis. Inflamm Bowel Dis 2011


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Limited Effects of Dietary Curcumin on Th-1 Driven Colitis in IL-10 Deficient Mice Suggest an IL-10 Dependent Mechanism of Protection

Claire B. Larmonier; Jennifer K. Uno; Kang Moon Lee; T. Karrasch; Daniel Laubitz; Robert D. Thurston; Monica T. Midura-Kiela; Fayez K. Ghishan; R. B. Sartor; Christian Jobin; Pawel R. Kiela

Curcumin (diferulolylmethane) demonstrates profound anti-inflammatory effects in intestinal epithelial cells (IEC) and in immune cells in vitro and exhibits a protective role in rodent models of chemically induced colitis, with its presumed primary mechanism of action via inhibition of NF-kappaB. Although it has been demonstrated effective in reducing relapse rate in ulcerative colitis patients, curcumins effectiveness in Crohns disease (CD) or in Th-1/Th-17 mediated immune models of CD has not been evaluated. Therefore, we investigated the effects of dietary curcumin (0.1-1%) on the development of colitis, immune activation, and in vivo NF-kappaB activity in germ-free IL-10(-/-) or IL-10(-/-);NF-kappaB(EGFP) mice colonized with specific pathogen-free microflora. Proximal and distal colon morphology showed a mild protective effect of curcumin only at 0.1%. Colonic IFN-gamma and IL-12/23p40 mRNA expression followed similar pattern ( approximately 50% inhibition at 0.1%). Secretion of IL-12/23p40 and IFN-gamma by colonic explants and mesenteric lymph node cells was elevated in IL-10(-/-) mice and was not decreased by dietary curcumin. Surprisingly, activation of NF-kappaB in IL-10(-/-) mice (phospho-NF-kappaBp65) or in IL-10(-/-);NF-kappaB(EGFP) mice (whole organ or confocal imaging) was not noticeably inhibited by curcumin. Furthermore, we demonstrate that IL-10 and curcumin act synergistically to downregulate NF-kappaB activity in IEC and IL-12/23p40 production by splenocytes and dendritic cells. In conclusion, curcumin demonstrates limited effectiveness on Th-1 mediated colitis in IL-10(-/-) mice, with moderately improved colonic morphology, but with no significant effect on pathogenic T cell responses and in situ NF-kappaB activity. In vitro studies suggest that the protective effects of curcumin are IL-10 dependent.


Laboratory Investigation | 2009

Recent advances in the renal-skeletal-gut axis that controls phosphate homeostasis

Pawel R. Kiela; Fayez K. Ghishan

Under physiological conditions, homeostasis of inorganic phosphate (Pi) is tightly controlled by a network of increasingly more complex interactions and direct or indirect feedback loops among classical players, such as vitamin D (1,25(OH)2D3), parathyroid hormone (PTH), intestinal and renal phosphate transporters, and the recently described phosphatonins and minhibins. A series of checks and balances offsets the effects of 1,25(OH)2D3 and PTH to enable fine-tuning of intestinal and renal Pi absorptive capacity and bone resorption and mineralization. The latter include PHEX, FGF-23, MEPE, DMP1, and secreted FRP4. Despite this large number of regulatory components with complex interactions, the system has limited redundancy and is prone to dysregulation under pathophysiological conditions. This article reviews and synthesizes recent advances to present a new model of Pi homeostasis.


Inflammatory Bowel Diseases | 2008

Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent.

Claire Billerey-Larmonier; Jennifer K. Uno; Nicolas Larmonier; Anna J. Midura; Barbara N. Timmermann; Fayez K. Ghishan; Pawel R. Kiela

Background: Curcumin (diferulolylmethane) has been shown to have a protective role in mouse models of inflammatory bowel diseases (IBD) and to reduce the relapse rate in human ulcerative colitis (UC), thus making it a potentially viable supportive treatment option. Trinitrobenzene sulfonic acid (TNBS) colitis in NKT‐deficient SJL/J mice has been described as Th1‐mediated inflammation, whereas BALB/c mice are believed to exhibit a mixed Th1/Th2 response. Methods: We therefore investigated the effect of dietary curcumin in colitis induced in these 2 strains. Results: In the BALB/c mice, curcumin significantly increased survival, prevented weight loss, and normalized disease activity. In the SJL/J mice, curcumin demonstrated no protective effects. Genomewide microarray analysis of colonic gene expression was employed to define the differential effect of curcumin in these 2 strains. This analysis not only confirmed the disparate responses of the 2 strains to curcumin but also indicated different responses to TNBS. Curcumin inhibited proliferation of splenocytes from naive BALB/c mice but not SJL/J mice when nonspecifically stimulated in vitro with concanavalin A (ConA). Proliferation of CD4+ splenocytes was inhibited in both strains, albeit with about a 2‐fold higher IC50 in SJL/J mice. Secretion of IL‐4 and IL‐5 by CD4+ lymphocytes of BALB/c mice but not SJL/J mice was significantly augmented by ConA and reduced to control levels by curcumin. Conclusions: The efficacy of dietary curcumin in TNBS colitis varies in BALB/c and SJL/J mouse strains. Although the exact mechanism underlying these differences is unclear, the results suggest that the therapeutic value of dietary curcumin may differ depending on the nature of immune dysregulation in IBD.


Gastroenterology | 2009

Changes in mucosal homeostasis predispose NHE3 knockout mice to increased susceptibility to DSS-induced epithelial injury

Pawel R. Kiela; Daniel Laubitz; Claire B. Larmonier; Monica T. Midura-Kiela; Maciej A. Lipko; Nona Janikashvili; Aiping Bai; Robert D. Thurston; Fayez K. Ghishan

BACKGROUND & AIMS NHE3 is a target of inhibition by proinflammatory cytokines and pathogenic bacteria, an event contributing to diarrhea in infectious and idiopathic colitis. In mice, NHE3 deficiency leads to mild diarrhea, increased intestinal expression of interferon (IFN)-gamma, and distal colitis, suggesting its role in epithelial barrier homeostasis. Our aim was to investigate the role of NHE3 in maintaining mucosal integrity. METHODS Control or dextran sulfate sodium (DSS)-treated, 6- to 8-week-old wild-type (WT) and NHE3(-/-) mice were used for the experiments. Small intestines were dissected for further analysis. RESULTS NHE3(-/-) mice have elevated numbers of CD8alpha(+) T and natural killer cells in the intraepithelial lymphocytes and lamina propria lymphocytes compartments, representing the source of IFN-gamma. NHE3(-/-) mice display alterations in epithelial gene and protein expression patterns that predispose them to a high susceptibility to DSS, with accelerated mortality resulting from intestinal bleeding, hypovolemic shock, and sepsis, even at a very low DSS concentration. Microarray analysis and intestinal hemorrhage indicate that NHE3 deficiency predisposes mice to DSS-induced small intestinal injury, a segment never reported as affected by DSS, and demonstrate major differences in the colonic response to DSS challenge in WT and NHE3(-/-) mice. In NHE3(-/-) mice, broad-spectrum oral antibiotics or anti-asialo GM1 antibodies reduce the expression of IFN-gamma and iNOS to basal levels and delay but do not prevent severe mortality in response to DSS treatment. CONCLUSIONS These results suggest that NHE3 participates in mucosal responses to epithelial damage, acting as a modifier gene determining the extent of the gut inflammatory responses in the face of intestinal injury.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Reduced colonic microbial diversity is associated with colitis in NHE3-deficient mice

Claire B. Larmonier; Daniel Laubitz; Faihza M. Hill; Kareem W. Shehab; Leszek Lipinski; Monica T. Midura-Kiela; Rita–Marie T. McFadden; Rajalakshmy Ramalingam; Kareem Hassan; Marcin Gołębiewski; David G. Besselsen; Fayez K. Ghishan; Pawel R. Kiela

Chronic inflammation and enteric infections are frequently associated with epithelial Na(+)/H(+) exchange (NHE) inhibition. Alterations in electrolyte transport and in mucosal pH associated with inflammation may represent a key mechanism leading to changes in the intestinal microbial composition. NHE3 expression is essential for the maintenance of the epithelial barrier function. NHE3(-/-) mice develop spontaneous distal chronic colitis and are highly susceptible to dextran sulfate (DSS)-induced mucosal injury. Spontaneous colitis is reduced with broad-spectrum antibiotics treatment, thus highlighting the importance of the microbiota composition in NHE3 deficiency-mediated colitis. We herein characterized the colonic microbiome of wild-type (WT) and NHE3(-/-) mice housed in a conventional environment using 454 pyrosequencing. We demonstrated a significant decrease in the phylogenetic diversity of the luminal and mucosal microbiota of conventional NHE3(-/-) mice compared with WT. Rederivation of NHE3(-/-) mice from conventional to a barrier facility eliminated the signs of colitis and decreased DSS susceptibility. Reintroduction of the conventional microflora into WT and NHE3(-/-) mice from the barrier facility resulted in the restoration of the symptoms initially described in the conventional environment. Interestingly, qPCR analysis of the microbiota composition in mice kept in the barrier facility compared with reconventionalized mice showed a significant reduction of Clostridia classes IV and XIVa. Therefore, the gut microbiome plays a prominent role in the pathogenesis of colitis in NHE3(-/-) mice, and, reciprocally, NHE3 also plays a critical role in shaping the gut microbiota. NHE3 deficiency may be a critical contributor to dysbiosis observed in patients with inflammatory bowel disease.

Collaboration


Dive into the Pawel R. Kiela's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Xu

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge