Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pawel Rosa is active.

Publication


Featured researches published by Pawel Rosa.


optical fiber communication conference | 2014

Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation

Ian Phillips; Mingming Tan; Marc Stephens; Mary Elizabeth McCarthy; Elias Giacoumidis; Stylianos Sygletos; Pawel Rosa; Simon Fabbri; Son Thai Le; Thavamaran Kanesan; Sergei K. Turitsyn; Nick Doran; Paul Harper; Andrew D. Ellis

We demonstrate that a combination of Raman laser based amplification and optical phase conjugation enables transmission beyond the nonlinear-Shannon limit. We show nonlinear compensation of 7×114Gbit/s DP-QPSK channels, increasing system reach by 30%.


Optics Express | 2016

Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping.

Mingming Tan; Pawel Rosa; Son Thai Le; Md. A. Iqbal; I. D. Phillips; Paul Harper

We demonstrate that a distributed Raman amplification scheme based on random distributed feedback (DFB) fiber laser enables bidirectional second-order Raman pumping without increasing relative intensity noise (RIN) of the signal. This extends the reach of 10 × 116 Gb/s DP-QPSK WDM transmission up to 7915 km, compared with conventional Raman amplification schemes. Moreover, this scheme gives the longest maximum transmission distance among all the Raman amplification schemes presented in this paper, whilst maintaining relatively uniform and symmetric signal power distribution, and is also adjustable in order to be highly compatible with different nonlinearity compensation techniques, including mid-link optical phase conjugation (OPC) and nonlinear Fourier transform (NFT).


Optics Express | 2015

Evaluation of 100G DP-QPSK long-haul transmission performance using second order co-pumped Raman laser based amplification.

Mingming Tan; Pawel Rosa; Son Thai Le; Ian Phillips; Paul Harper

We present, for the first time, a detailed investigation of the impact of second order co-propagating Raman pumping on long-haul 100G WDM DP-QPSK coherent transmission of up to 7082 km using Raman fibre laser based configurations. Signal power and noise distributions along the fibre for each pumping scheme were characterised both numerically and experimentally. Based on these pumping schemes, the Q factor penalties versus co-pump power ratios were experimentally measured and quantified. A significant Q factor penalty of up to 4.15 dB was observed after 1666 km using symmetric bidirectional pumping, compared with counter-pumping only. Our results show that whilst using co-pumping minimises the intra-cavity signal power variation and amplification noise, the Q factor penalty with co-pumping was too great for any advantage to be seen. The relative intensity noise (RIN) characteristics of the induced fibre laser and the output signal, and the intra-cavity RF spectra of the fibre laser are also presented. We attribute the Q factor degradation to RIN induced penalty due to RIN being transferred from the first order fibre laser and second order co-pump to the signal. More importantly, there were two different fibre lasing regimes contributing to the amplification. It was random distributed feedback lasing when using counter-pumping only and conventional Fabry-Perot cavity lasing when using all bidirectional pumping schemes. This also results in significantly different performances due to different laser cavity lengths for these two classes of laser.


optical fiber communication conference | 2015

Extended reach of 116 Gb/s DP-QPSK transmission using random DFB fiber laser based raman amplification and bidirectional second-order pumping

Mingming Tan; Pawel Rosa; I. D. Phillips; Paul Harper

We propose a novel random DFB fiber laser based Raman amplification using bidirectional second-order pumping. This extends the reach of 116 Gb/s DP-QPSK WDM transmission up to 7915 km, compared with other Raman amplification techniques.


Optics Letters | 2015

Unrepeatered Nyquist PDM-16QAM transmission over 364 km using Raman amplification and multi-channel digital back-propagation

Lidia Galdino; Mingming Tan; Domanic Lavery; Pawel Rosa; Robert Maher; Ian Phillips; Juan Diego Ania Castañón; Paul Harper; Robert I. Killey; Benn C. Thomsen; Sergejs Makovejs; Polina Bayvel

Transmission of a net 467-Gb/s PDM-16QAM Nyquist-spaced superchannel is reported with an intra-superchannel net spectral efficiency (SE) of 6.6 (b/s)/Hz, over 364-km SMF-28 ULL ultra-low loss optical fiber, enabled by bi-directional second-order Raman amplification and digital nonlinearity compensation. Multi-channel digital back-propagation (MC-DBP) was applied to compensate for nonlinear interference; an improvement of 2 dB in Q(2) factor was achieved when 70-GHz DBP bandwidth was applied, allowing an increase in span length of 37 km.


Optics Express | 2014

Unrepeatered DPSK transmission over 360 km SMF-28 fibre using URFL based amplification

Pawel Rosa; Juan Diego Ania-Castañón; Paul Harper

Unrepeatered 42.7 Gb/s per channel RZ-DPSK transmission over standard SMF-28 fibre with novel URFL based amplification using fibre Bragg gratings is investigated. OSNR and gain performance are studied experimentally and through simulations. Error free transmission for 16 channels across the full C-band with direct detection was experimentally demonstrated for 280 km span length, as well as 6-channel transmission at 340 km and single-channel transmission up to 360 km (75 dB) without employing ROPA or specialty fibres.


Journal of Lightwave Technology | 2016

Amplification Schemes and Multi-Channel DBP for Unrepeatered Transmission

Lidia Galdino; Mingming Tan; Alex Alvarado; Domanic Lavery; Pawel Rosa; Robert Maher; Juan Diego Ania-Castañón; Paul Harper; Sergejs Makovejs; Benn C. Thomsen; Polina Bayvel

The performance of unrepeatered transmission of a seven Nyquist-spaced 10 GBd PDM-16QAM superchannel using full signal band coherent detection and multi-channel digital back propagation (MC-DBP) to mitigate nonlinear effects is analysed. For the first time in unrepeatered transmission, the performance of two amplification systems is investigated and directly compared in terms of achievable information rates (AIRs): 1) erbium-doped fibre amplifier (EDFA) and 2) second-order bidirectional Raman pumped amplification. The experiment is performed over different span lengths, demonstrating that, for an AIR of 6.8 bit/s/Hz, the Raman system enables an increase of 93 km (36 %) in span length. Further, at these distances, MC-DBP gives an improvement in AIR of 1 bit/s/Hz (to 7.8 bit/s/Hz) for both amplification schemes. The theoretical AIR gains for Raman and MC-DBP are shown to be preserved when considering low-density parity-check codes. Additionally, MC-DBP algorithms for both amplification schemes are compared in terms of performance and computational complexity. It is shown that to achieve the maximum MC-DBP gain, the Raman system requires approximately four times the computational complexity due to the distributed impact of fibre nonlinearity.


IEEE Photonics Technology Letters | 2015

Unrepeatered DP-QPSK Transmission Over 352.8 km SMF Using Random DFB Fiber Laser Amplification

Pawel Rosa; Mingming Tan; Son Thai Le; Ian D. Philips; Juan Diego Ania-Castañón; Stylianos Sygletos; Paul Harper

Unrepeatered 100 Gbit/s per channel wave-divisionmultiplexed dual-polarization-QPSK transmission with random distributed feedback fiber laser-based Raman amplification using fiber Bragg grating is demonstrated. Transmission of 1.4 Tb/s (14 × 100 Gbit/s) was possible in 352.8 km link and 2.2 Tb/s (22 × 100 Gbit/s) was achieved in 327.6 km without employing remote optically pumped amplifier or speciality fibers.


Optics Express | 2015

Characterisation of random DFB Raman laser amplifier for WDM transmission.

Pawel Rosa; Giuseppe Rizzelli; Mingming Tan; Paul Harper; Juan Diego Ania-Castañón

We perform a full numerical characterisation of half-open cavity random DFB Raman fibre laser amplifier schemes for WDM transmission in terms of signal power variation, noise and nonlinear impairments, showcasing the excellent potential of this scheme to provide amplification for DWDM transmission with very low gain variation.


Optics Express | 2015

Signal power asymmetry optimisation for optical phase conjugation using Raman amplification

Pawel Rosa; Son Thai Le; Giuseppe Rizzelli; Mingming Tan; Juan Diego Ania-Castañón

We numerically optimise in-span signal power asymmetry in different advanced Raman amplification schemes, achieving a 3% asymmetry over 62 km SMF using random DFB Raman laser amplifier. We then evaluate the impact of such asymmetry on the performance of systems using mid-link OPC by simulating transmission of 7 × 15 Gbaud 16QAM Nyquist-spaced WDM-PDM signals.

Collaboration


Dive into the Pawel Rosa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Diego Ania-Castañón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Rizzelli

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Gallazzi

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pedro Corredera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge