Pawel Stankiewicz
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pawel Stankiewicz.
Trends in Genetics | 2002
Pawel Stankiewicz; James R. Lupski
An increasing number of human diseases are recognized to result from recurrent DNA rearrangements involving unstable genomic regions. These are termed genomic disorders, in which the clinical phenotype is a consequence of abnormal dosage of gene(s) located within the rearranged genomic fragments. Both inter- and intrachromosomal rearrangements are facilitated by the presence of region-specific low-copy repeats (LCRs) and result from nonallelic homologous recombination (NAHR) between paralogous genomic segments. LCRs usually span approximately 10-400 kb of genomic DNA, share >or= 97% sequence identity, and provide the substrates for homologous recombination, thus predisposing the region to rearrangements. Moreover, it has been suggested that higher order genomic architecture involving LCRs plays a significant role in karyotypic evolution accompanying primate speciation.
The New England Journal of Medicine | 2010
James R. Lupski; Jeffrey G. Reid; Claudia Gonzaga-Jauregui; David Rio Deiros; Lynne V. Nazareth; Matthew N. Bainbridge; Huyen Dinh; Chyn Jing; David A. Wheeler; Amy L. McGuire; Feng Zhang; Pawel Stankiewicz; John J. Halperin; Chengyong Yang; Curtis Gehman; Danwei Guo; Rola K. Irikat; Warren Tom; Nick J. Fantin; Donna M. Muzny; Richard A. Gibbs; Abstr Act
BACKGROUND Whole-genome sequencing may revolutionize medical diagnostics through rapid identification of alleles that cause disease. However, even in cases with simple patterns of inheritance and unambiguous diagnoses, the relationship between disease phenotypes and their corresponding genetic changes can be complicated. Comprehensive diagnostic assays must therefore identify all possible DNA changes in each haplotype and determine which are responsible for the underlying disorder. The high number of rare, heterogeneous mutations present in all humans and the paucity of known functional variants in more than 90% of annotated genes make this challenge particularly difficult. Thus, the identification of the molecular basis of a genetic disease by means of whole-genome sequencing has remained elusive. We therefore aimed to assess the usefulness of human whole-genome sequencing for genetic diagnosis in a patient with Charcot-Marie-Tooth disease. METHODS We identified a family with a recessive form of Charcot-Marie-Tooth disease for which the genetic basis had not been identified. We sequenced the whole genome of the proband, identified all potential functional variants in genes likely to be related to the disease, and genotyped these variants in the affected family members. RESULTS We identified and validated compound, heterozygous, causative alleles in SH3TC2 (the SH3 domain and tetratricopeptide repeats 2 gene), involving two mutations, in the proband and in family members affected by Charcot-Marie-Tooth disease. Separate subclinical phenotypes segregated independently with each of the two mutations; heterozygous mutations confer susceptibility to neuropathy, including the carpal tunnel syndrome. CONCLUSIONS As shown in this study of a family with Charcot-Marie-Tooth disease, whole-genome sequencing can identify clinically relevant variants and provide diagnostic information to inform the care of patients.
PLOS Genetics | 2005
James R. Lupski; Pawel Stankiewicz
Rearrangements of our genome can be responsible for inherited as well as sporadic traits. The analyses of chromosome breakpoints in the proximal short arm of Chromosome 17 (17p) reveal nonallelic homologous recombination (NAHR) as a major mechanism for recurrent rearrangements whereas nonhomologous end-joining (NHEJ) can be responsible for many of the nonrecurrent rearrangements. Genome architectural features consisting of low-copy repeats (LCRs), or segmental duplications, can stimulate and mediate NAHR, and there are hotspots for the crossovers within the LCRs. Rearrangements introduce variation into our genome for selection to act upon and as such serve an evolutionary function analogous to base pair changes. Genomic rearrangements may cause Mendelian diseases, produce complex traits such as behaviors, or represent benign polymorphic changes. The mechanisms by which rearrangements convey phenotypes are diverse and include gene dosage, gene interruption, generation of a fusion gene, position effects, unmasking of recessive coding region mutations (single nucleotide polymorphisms, SNPs, in coding DNA) or other functional SNPs, and perhaps by effects on transvection.
Nature Genetics | 2008
Nicola Brunetti-Pierri; Jonathan S. Berg; Fernando Scaglia; John W. Belmont; Carlos A. Bacino; Trilochan Sahoo; Seema R. Lalani; Brett H. Graham; Brendan Lee; Marwan Shinawi; Joseph Shen; Sung Hae L Kang; Amber Pursley; Timothy Lotze; Gail Kennedy; Susan Lansky-Shafer; Christine Weaver; Elizabeth Roeder; Theresa A. Grebe; Georgianne L. Arnold; Terry Hutchison; Tyler Reimschisel; Stephen Amato; Michael T. Geragthy; Jeffrey W. Innis; Ewa Obersztyn; Beata Nowakowska; Sally Rosengren; Patricia I. Bader; Dorothy K. Grange
Chromosome region 1q21.1 contains extensive and complex low-copy repeats, and copy number variants (CNVs) in this region have recently been reported in association with congenital heart defects, developmental delay, schizophrenia and related psychoses. We describe 21 probands with the 1q21.1 microdeletion and 15 probands with the 1q21.1 microduplication. These CNVs were inherited in most of the cases in which parental studies were available. Consistent and statistically significant features of microcephaly and macrocephaly were found in individuals with microdeletion and microduplication, respectively. Notably, a paralog of the HYDIN gene located on 16q22.2 and implicated in autosomal recessive hydrocephalus was inserted into the 1q21.1 region during the evolution of Homo sapiens; we found this locus to be deleted or duplicated in the individuals we studied, making it a probable candidate for the head size abnormalities observed. We propose that recurrent reciprocal microdeletions and microduplications within 1q21.1 represent previously unknown genomic disorders characterized by abnormal head size along with a spectrum of developmental delay, neuropsychiatric abnormalities, dysmorphic features and congenital anomalies. These phenotypes are subject to incomplete penetrance and variable expressivity.
Journal of Medical Genetics | 2010
Marwan Shinawi; Pengfei Liu; Sung Hae L Kang; Joseph Shen; John W. Belmont; Daryl A. Scott; Frank J. Probst; William J. Craigen; Brett H. Graham; Amber Pursley; Gary D. Clark; Jennifer A. Lee; Monica Proud; Amber Stocco; Diana L. Rodriguez; Beth A. Kozel; Steven Sparagana; Elizabeth Roeder; Susan G. McGrew; Thaddeus W. Kurczynski; Leslie J. Allison; Stephen Amato; Sarah Savage; Ankita Patel; Pawel Stankiewicz; Arthur L. Beaudet; Sau Wai Cheung; James R. Lupski
Background Deletion and the reciprocal duplication in 16p11.2 were recently associated with autism and developmental delay. Method We indentified 27 deletions and 18 duplications of 16p11.2 were identified in 0.6% of all samples submitted for clinical array-CGH (comparative genomic hybridisation) analysis. Detailed molecular and phenotypic characterisations were performed on 17 deletion subjects and ten subjects with the duplication. Results The most common clinical manifestations in 17 deletion and 10 duplication subjects were speech/language delay and cognitive impairment. Other phenotypes in the deletion patients included motor delay (50%), seizures (∼40%), behavioural problems (∼40%), congenital anomalies (∼30%), and autism (∼20%). The phenotypes among duplication patients included motor delay (6/10), behavioural problems (especially attention deficit hyperactivity disorder (ADHD)) (6/10), congenital anomalies (5/10), and seizures (3/10). Patients with the 16p11.2 deletion had statistically significant macrocephaly (p<0.0017) and 6 of the 10 patients with the duplication had microcephaly. One subject with the deletion was asymptomatic and another with the duplication had a normal cognitive and behavioural phenotype. Genomic analyses revealed additional complexity to the 16p11.2 region with mechanistic implications. The chromosomal rearrangement was de novo in all but 2 of the 10 deletion cases in which parental studies were available. Additionally, 2 de novo cases were apparently mosaic for the deletion in the analysed blood sample. Three de novo and 2 inherited cases were observed in the 5 of 10 duplication patients where data were available. Conclusions Recurrent reciprocal 16p11.2 deletion and duplication are characterised by a spectrum of primarily neurocognitive phenotypes that are subject to incomplete penetrance and variable expressivity. The autism and macrocephaly observed with deletion and ADHD and microcephaly seen in duplication patients support a diametric model of autism spectrum and psychotic spectrum behavioural phenotypes in genomic sister disorders.
American Journal of Human Genetics | 2007
Lorraine Potocki; Weimin Bi; Diane Treadwell-Deering; Claudia M.B. Carvalho; Anna Eifert; Ellen M. Friedman; Daniel G. Glaze; Kevin R. Krull; Jennifer A. Lee; Richard Alan Lewis; Roberto Mendoza-Londono; Patricia Robbins-Furman; Chad A. Shaw; Xin Shi; George Weissenberger; Marjorie Withers; Svetlana A. Yatsenko; Elaine H. Zackai; Pawel Stankiewicz; James R. Lupski
The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described--the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (~3.7 Mb), 13 subjects (~37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability.
Cell | 2011
Pengfei Liu; Ayelet Erez; Sandesh C.S. Nagamani; Shweta U. Dhar; Katarzyna E. Kolodziejska; Avinash V. Dharmadhikari; M. Lance Cooper; Joanna Wiszniewska; Feng Zhang; Marjorie Withers; Carlos A. Bacino; Luis Daniel Campos-Acevedo; Mauricio R. Delgado; Debra Freedenberg; Adolfo Garnica; Theresa A. Grebe; Dolores Hernández-Almaguer; Ladonna Immken; Seema R. Lalani; Scott D. McLean; Hope Northrup; Fernando Scaglia; Lane Strathearn; Pamela Trapane; Sung Hae L Kang; Ankita Patel; Sau Wai Cheung; P. J. Hastings; Pawel Stankiewicz; James R. Lupski
Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organisms life cycle.
American Journal of Human Genetics | 2009
Pawel Stankiewicz; Partha Sen; Samarth Bhatt; Mekayla Storer; Zhilian Xia; Bassem A. Bejjani; Zhishuo Ou; Joanna Wiszniewska; Daniel J. Driscoll; Juan Bolivar; Mislen Bauer; Elaine H. Zackai; Donna M. McDonald-McGinn; Małgorzata M.J. Nowaczyk; Mitzi L. Murray; Tamim H. Shaikh; Vicki Martin; Matthew Tyreman; Ingrid Simonic; Lionel Willatt; Joan Paterson; Sarju G. Mehta; Diana Rajan; Tomas Fitzgerald; Susan M. Gribble; Elena Prigmore; Ankita Patel; Lisa G. Shaffer; Nigel P. Carter; Sau Wai Cheung
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare, neonatally lethal developmental disorder of the lung with defining histologic abnormalities typically associated with multiple congenital anomalies (MCA). Using array CGH analysis, we have identified six overlapping microdeletions encompassing the FOX transcription factor gene cluster in chromosome 16q24.1q24.2 in patients with ACD/MPV and MCA. Subsequently, we have identified four different heterozygous mutations (frameshift, nonsense, and no-stop) in the candidate FOXF1 gene in unrelated patients with sporadic ACD/MPV and MCA. Custom-designed, high-resolution microarray analysis of additional ACD/MPV samples revealed one microdeletion harboring FOXF1 and two distinct microdeletions upstream of FOXF1, implicating a position effect. DNA sequence analysis revealed that in six of nine deletions, both breakpoints occurred in the portions of Alu elements showing eight to 43 base pairs of perfect microhomology, suggesting replication error Microhomology-Mediated Break-Induced Replication (MMBIR)/Fork Stalling and Template Switching (FoSTeS) as a mechanism of their formation. In contrast to the association of point mutations in FOXF1 with bowel malrotation, microdeletions of FOXF1 were associated with hypoplastic left heart syndrome and gastrointestinal atresias, probably due to haploinsufficiency for the neighboring FOXC2 and FOXL1 genes. These differences reveal the phenotypic consequences of gene alterations in cis.
Nature Genetics | 2002
Cornelius F. Boerkoel; Hiroshi Takashima; Joy John; Jiong Yan; Pawel Stankiewicz; Lisa Rosenbarker; Jean Luc André; Radovan Bogdanovic; Antoine Burguet; Sandra Cockfield; Isabel Cordeiro; Stefan Fründ; Friederike Illies; Mark Joseph; Ilkka Kaitila; Giuliana Lama; Chantal Loirat; D. Ross McLeod; David V. Milford; Elizabeth M. Petty; Francisco Rodrigo; Jorge M. Saraiva; Beate Schmidt; Graham C. Smith; Jürgen Spranger; Anja Stein; Hannelore Thiele; Jane Tizard; Rosanna Weksberg; James R. Lupski
Schimke immuno-osseous dysplasia (SIOD, MIM 242900) is an autosomal-recessive pleiotropic disorder with the diagnostic features of spondyloepiphyseal dysplasia, renal dysfunction and T-cell immunodeficiency. Using genome-wide linkage mapping and a positional candidate approach, we determined that mutations in SMARCAL1 (SWI/SNF2-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a–like 1), are responsible for SIOD. Through analysis of data from persons with SIOD in 26 unrelated families, we observed that affected individuals from 13 of 23 families with severe disease had two alleles with nonsense, frameshift or splicing mutations, whereas affected individuals from 3 of 3 families with milder disease had a missense mutation on each allele. These observations indicate that some missense mutations allow retention of partial SMARCAL1 function and thus cause milder disease.
PLOS ONE | 2007
Xinyan Lu; Chad A. Shaw; Ankita Patel; Jiangzhen Li; M. Lance Cooper; William R. Wells; Cathy Sullivan; Trilochan Sahoo; Svetlana A. Yatsenko; Carlos A. Bacino; Pawel Stankiewicz; Zhishu Ou; A. Craig Chinault; Arthur L. Beaudet; James R. Lupski; Sau Wai Cheung; Patricia A. Ward
Background Array Comparative Genomic Hybridization (a-CGH) is a powerful molecular cytogenetic tool to detect genomic imbalances and study disease mechanism and pathogenesis. We report our experience with the clinical implementation of this high resolution human genome analysis, referred to as Chromosomal Microarray Analysis (CMA). Methods and Findings CMA was performed clinically on 2513 postnatal samples from patients referred with a variety of clinical phenotypes. The initial 775 samples were studied using CMA array version 4 and the remaining 1738 samples were analyzed with CMA version 5 containing expanded genomic coverage. Overall, CMA identified clinically relevant genomic imbalances in 8.5% of patients: 7.6% using V4 and 8.9% using V5. Among 117 cases referred for additional investigation of a known cytogenetically detectable rearrangement, CMA identified the majority (92.5%) of the genomic imbalances. Importantly, abnormal CMA findings were observed in 5.2% of patients (98/1872) with normal karyotypes/FISH results, and V5, with expanded genomic coverage, enabled a higher detection rate in this category than V4. For cases without cytogenetic results available, 8.0% (42/524) abnormal CMA results were detected; again, V5 demonstrated an increased ability to detect abnormality. Improved diagnostic potential of CMA is illustrated by 90 cases identified with 51 cryptic microdeletions and 39 predicted apparent reciprocal microduplications in 13 specific chromosomal regions associated with 11 known genomic disorders. In addition, CMA identified copy number variations (CNVs) of uncertain significance in 262 probands; however, parental studies usually facilitated clinical interpretation. Of these, 217 were interpreted as familial variants and 11 were determined to be de novo; the remaining 34 await parental studies to resolve the clinical significance. Conclusions This large set of clinical results demonstrates the significantly improved sensitivity of CMA for the detection of clinically relevant genomic imbalances and highlights the need for comprehensive genetic counseling to facilitate accurate clinical correlation and interpretation.