Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Payam M. Barnaghi is active.

Publication


Featured researches published by Payam M. Barnaghi.


Journal of Web Semantics | 2012

Ontology paper: The SSN ontology of the W3C semantic sensor network incubator group

Michael Compton; Payam M. Barnaghi; Luis Bermudez; Raúl García-Castro; Oscar Corcho; Simon Cox; John Graybeal; Manfred Hauswirth; Cory Andrew Henson; Arthur Herzog; Vincent Huang; Krzysztof Janowicz; W. David Kelsey; Danh Le Phuoc; Laurent Lefort; Myriam Leggieri; Holger Neuhaus; Andriy Nikolov; Kevin R. Page; Alexandre Passant; Amit P. Sheth; Kerry Taylor

The W3C Semantic Sensor Network Incubator group (the SSN-XG) produced an OWL 2 ontology to describe sensors and observations - the SSN ontology, available at http://purl.oclc.org/NET/ssnx/ssn. The SSN ontology can describe sensors in terms of capabilities, measurement processes, observations and deployments. This article describes the SSN ontology. It further gives an example and describes the use of the ontology in recent research projects.


IEEE Transactions on Knowledge and Data Engineering | 2010

Probabilistic Topic Models for Learning Terminological Ontologies

Wei Wang; Payam M. Barnaghi; Andrzej Bargiela

Probabilistic topic models were originally developed and utilized for document modeling and topic extraction in Information Retrieval. In this paper, we describe a new approach for automatic learning of terminological ontologies from text corpus based on such models. In our approach, topic models are used as efficient dimension reduction techniques, which are able to capture semantic relationships between word-topic and topic-document interpreted in terms of probability distributions. We propose two algorithms for learning terminological ontologies using the principle of topic relationship and exploiting information theory with the probabilistic topic models learned. Experiments with different model parameters were conducted and learned ontology statements were evaluated by the domain experts. We have also compared the results of our method with two existing concept hierarchy learning methods on the same data set. The study shows that our method outperforms other methods in terms of recall and precision measures. The precision level of the learned ontology is sufficient for it to be deployed for the purpose of browsing, navigation, and information search and retrieval in digital libraries.


IEEE Communications Magazine | 2009

The SENSEI project: integrating the physical world with the digital world of the network of the future

Mirko Presser; Payam M. Barnaghi; Markus Eurich; Claudia Villalonga

The Internet extends its reach to the real world through innovations collectively termed the Internet of Things (IoT). The IoT aims at integrating technologies such as radio frequency identification, wireless sensor and actuator networks (WSANs), and networked embedded devices. Recent ideas envision the Internet as an all encompassing infrastructure that connects the physical into the digital world: the real world Internet (RWI). The European project SENSEI plays a leading role within the current efforts to create an underlying architecture and services for the future Internet and to realize the vision of the RWI.


european conference on smart sensing and context | 2009

Semantic annotation and reasoning for sensor data

Wang Wei; Payam M. Barnaghi

Developments in (wireless) sensor and actuator networks and the capabilities to manufacture low cost and energy efficient networked embedded devices have lead to considerable interest in adding real world sense to the Internet and the Web. Recent work has raised the idea towards combining the Internet of Things (i.e. real world resources) with semantic Web technologies to design future service and applications for the Web. In this paper we focus on the current developments and discussions on designing Semantic Sensor Web, particularly, we advocate the idea of semantic annotation with the existing authoritative data published on the semantic Web. Through illustrative examples, we demonstrate how rule-based reasoning can be performed over the sensor observation and measurement data and linked data to derive additional or approximate knowledge. Furthermore, we discuss the association between sensor data, the semantic Web, and the social Web which enable construction of context-aware applications and services, and contribute to construction of a networked knowledge framework.


IEEE Access | 2016

CityPulse: Large Scale Data Analytics Framework for Smart Cities

Dan Puiu; Payam M. Barnaghi; Ralf Tönjes; Daniel Kümper; Muhammad Intizar Ali; Alessandra Mileo; Josiane Xavier Parreira; Marten Fischer; Sefki Kolozali; Nazli Farajidavar; Feng Gao; Thorben Iggena; Thu-Le Pham; Cosmin-Septimiu Nechifor; Daniel Puschmann; Joao Fernandes

Our world and our lives are changing in many ways. Communication, networking, and computing technologies are among the most influential enablers that shape our lives today. Digital data and connected worlds of physical objects, people, and devices are rapidly changing the way we work, travel, socialize, and interact with our surroundings, and they have a profound impact on different domains, such as healthcare, environmental monitoring, urban systems, and control and management applications, among several other areas. Cities currently face an increasing demand for providing services that can have an impact on peoples everyday lives. The CityPulse framework supports smart city service creation by means of a distributed system for semantic discovery, data analytics, and interpretation of large-scale (near-)real-time Internet of Things data and social media data streams. To goal is to break away from silo applications and enable cross-domain data integration. The CityPulse framework integrates multimodal, mixed quality, uncertain and incomplete data to create reliable, dependable information and continuously adapts data processing techniques to meet the quality of information requirements from end users. Different than existing solutions that mainly offer unified views of the data, the CityPulse framework is also equipped with powerful data analytics modules that perform intelligent data aggregation, event detection, quality assessment, contextual filtering, and decision support. This paper presents the framework, describes its components, and demonstrates how they interact to support easy development of custom-made applications for citizens. The benefits and the effectiveness of the framework are demonstrated in a use-case scenario implementation presented in this paper.


IEEE Internet of Things Journal | 2015

A Practical Evaluation of Information Processing and Abstraction Techniques for the Internet of Things

Frieder Ganz; Daniel Puschmann; Payam M. Barnaghi; Francois Carrez

The term Internet of Things (IoT) refers to the interaction and communication between billions of devices that produce and exchange data related to real-world objects (i.e. things). Extracting higher level information from the raw sensory data captured by the devices and representing this data as machine-interpretable or human-understandable information has several interesting applications. Deriving raw data into higher level information representations demands mechanisms to find, extract, and characterize meaningful abstractions from the raw data. This meaningful abstractions then have to be presented in a human and/or machine-understandable representation. However, the heterogeneity of the data originated from different sensor devices and application scenarios such as e-health, environmental monitoring, and smart home applications, and the dynamic nature of sensor data make it difficult to apply only one particular information processing technique to the underlying data. A considerable amount of methods from machine-learning, the semantic web, as well as pattern and data mining have been used to abstract from sensor observations to information representations. This paper provides a survey of the requirements and solutions and describes challenges in the area of information abstraction and presents an efficient workflow to extract meaningful information from raw sensor data based on the current state-of-the-art in this area. This paper also identifies research directions at the edge of information abstraction for sensor data. To ease the understanding of the abstraction workflow process, we introduce a software toolkit that implements the introduced techniques and motivates to apply them on various data sets.


green computing and communications | 2014

A Knowledge-Based Approach for Real-Time IoT Data Stream Annotation and Processing

Sefki Kolozali; María Bermúdez-Edo; Daniel Puschmann; Frieder Ganz; Payam M. Barnaghi

Internet of Things is a generic term that refers to interconnection of real-world services which are provided by smart objects and sensors that enable interaction with the physical world. Cities are also evolving into large interconnected ecosystems in an effort to improve sustainability and operational efficiency of the city services and infrastructure. However, it is often difficult to perform real-time analysis of large amount of heterogeneous data and sensory information that are provided by various sources. This paper describes a framework for real-time semantic annotation of streaming IoT data to support dynamic integration into the Web using the Advanced Message Queuing Protocol (AMPQ). This will enable delivery of large volume of data that can influence the performance of the smart city systems that use IoT data. We present an information model to represent summarisation and reliability of stream data. The framework is evaluated with the data size and average exchanged message time using summarised and raw sensor data. Based on a statistical analysis, a detailed comparison between various sensor points is made to investigate the memory and computational cost for the stream annotation framework.


IEEE Transactions on Services Computing | 2014

Probabilistic Matchmaking Methods for Automated Service Discovery

Gilbert Cassar; Payam M. Barnaghi; Klaus Moessner

Automated service discovery enables human users or software agents to form queries and to search and discover the services based on different requirements. This enables implementation of high-level functionalities such as service recommendation, composition, and provisioning. The current service search and discovery on the Web is mainly supported by text and keyword-based solutions which offer very limited semantic expressiveness to service developers and consumers. This paper presents a method using probabilistic machine-learning techniques to extract latent factors from semantically enriched service descriptions. The latent factors are used to construct a model to represent different types of service descriptions in a vector form. With this transformation, heterogeneous service descriptions can be represented, discovered, and compared on the same homogeneous plane. The proposed solution is scalable to large service datasets and provides an efficient mechanism that enables publishing and adding new services to the registry and representing them using latent factors after deployment of the system. We have evaluated our solution against logic-based and keyword-based service search and discovery solutions. The results show that the proposed method performs better than other solutions in terms of precision and normalized discounted cumulative gain values.


communication system software and middleware | 2011

Context-aware management for sensor networks

Frieder Ganz; Payam M. Barnaghi; Francois Carrez; Klaus Moessner

The wide field of wireless sensor networks requires that hundreds or even thousands of sensor nodes have to be maintained and configured. With the upcoming initatives such as Smart Home and Internet of Things, we need new mechanism to discover and manage this amount of sensors. In this paper, we describe a middleware architecture that uses context information of sensors to supply a plug-and-play gateway and resource management framework for heterogeneous sensor networks. Our main goals are to minimise the effort for network engineers to configure and maintain the network and supply a unified interface to access the underlying heterogeneous network. Based on the context information such as battery status, routing information, location and radio signal strength the gateway will configure and maintain the sensor network. The sensors are associated to nearby base stations using an approach that is adapted from the 802.11 WLAN association and negotiation mechanism to provide registration and connectivity services for the underlying sensor devices. This abstracted connection layer can be used to integrate the underlying sensor networks into high-level services and applications such as IP-based networks and Web services.


ACM Transactions on Intelligent Systems and Technology | 2015

Extracting City Traffic Events from Social Streams

Pramod Anantharam; Payam M. Barnaghi; Krishnaprasad Thirunarayan; Amit P. Sheth

Cities are composed of complex systems with physical, cyber, and social components. Current works on extracting and understanding city events mainly rely on technology-enabled infrastructure to observe and record events. In this work, we propose an approach to leverage citizen observations of various city systems and services, such as traffic, public transport, water supply, weather, sewage, and public safety, as a source of city events. We investigate the feasibility of using such textual streams for extracting city events from annotated text. We formalize the problem of annotating social streams such as microblogs as a sequence labeling problem. We present a novel training data creation process for training sequence labeling models. Our automatic training data creation process utilizes instance-level domain knowledge (e.g., locations in a city, possible event terms). We compare this automated annotation process to a state-of-the-art tool that needs manually created training data and show that it has comparable performance in annotation tasks. An aggregation algorithm is then presented for event extraction from annotated text. We carry out a comprehensive evaluation of the event annotation and event extraction on a real-world dataset consisting of event reports and tweets collected over 4 months from the San Francisco Bay Area. The evaluation results are promising and provide insights into the utility of social stream for extracting city events.

Collaboration


Dive into the Payam M. Barnaghi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wang

University of Surrey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge