Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pearse McCarron is active.

Publication


Featured researches published by Pearse McCarron.


Journal of Agricultural and Food Chemistry | 2009

Formation of azaspiracids-3, -4, -6, and -9 via decarboxylation of carboxyazaspiracid metabolites from shellfish.

Pearse McCarron; Jane Kilcoyne; Christopher O. Miles; Philipp Hess

The azaspiracid (AZA) class of phycotoxins has been responsible for extended closures of shellfisheries in various locations around Europe, where levels of AZA1-3 are regulated in shellfish. Since their discovery in 1995, AZAs have been the focus of much research, resulting in the discovery of numerous analogues. During studies of procedures for processing of AZA-contaminated mussels ( Mytilus edulis ), an unusual phenomenon was observed involving AZA3. In uncooked tissues, AZA3 levels would increase significantly when heated for short periods of time in the absence of water loss. A similar increase in AZA3 concentrations occurred during storage of shellfish tissue reference materials for several months at temperatures as low as 4 degrees C. Concentrations of AZA1 and AZA2 did not change during these experiments. Several possible explanations were investigated, including an AZA3-specific matrix effect upon heating of tissues, release of AZA3 from the matrix, and formation of AZA3 from a precursor. Preliminary experiments indicated that toxin conversion was responsible, and more detailed studies focused on this possibility. LC-MS analysis of heating trials, deuterium labeling experiments, and kinetic studies demonstrated that a carboxylated AZA analogue, AZA17, undergoes rapid decarboxylation when heated to produce AZA3. Heat-induced decarboxylation of AZA19, AZA21, and AZA23 to form AZA6, AZA4, and AZA9, respectively, was also demonstrated. This finding is of great significance in terms of procedures used in the processing of shellfish for regulatory analysis, and it exemplifies the role that chemical analysis can play in understanding the contribution of metabolic processes to the toxin profiles observed in shellfish samples.


Toxicon | 2012

Toxins in mussels (Mytilus galloprovincialis) associated with diarrhetic shellfish poisoning episodes in China

Aifeng Li; Jinggang Ma; Jijuan Cao; Pearse McCarron

More than 200 people in China suffered illness with symptoms of diarrhetic shellfish poisoning (DSP) following consumption of mussels (Mytilus galloprovincialis). The event occurred in the cities of Ningbo and Ningde near the East China Sea in May, 2011. LC-MS/MS analysis showed that high concentrations of okadaic acid, dinophysistoxin-1, and their acyl esters were responsible for the incidents. The total concentration was more than 40 times the EU regulatory limit of 160 μg OA eq./kg. Pectentoxin-2 and its seco-acids were also present in the mussels. Additionally, yessotoxins were found to be responsible for positive mouse bioassay results on scallop (Patinopecten yessoensis) and oyster (Crassostrea talienwhanensis) samples collected from the North Yellow Sea in June, 2010. This work shows that high levels of lipophilic toxins can accumulate in shellfish from the Chinese coast and it emphasises that adequate chemical analytical methodologies are needed for monitoring purposes. Further research is required to broaden the knowledge on the occurrence of lipophilic toxins in Chinese shellfish.


Journal of Agricultural and Food Chemistry | 2012

Identification of Pinnatoxins and Discovery of Their Fatty Acid Ester Metabolites in Mussels (Mytilus edulis) from Eastern Canada

Pearse McCarron; Wade Rourke; William R. Hardstaff; Brandy Pooley; Michael A. Quilliam

Pinnatoxins are a group of fast-acting cyclic imine toxins previously identified in shellfish from Asia, the southern Pacific, and northern Europe. In this work pinnatoxins were detected in mussels from locations across the eastern coast of Canada. Pinnatoxin G (6) was the major structural variant present, sometimes at levels >80 μg/kg, whereas much lower levels of pinnatoxin A (1) were detected in some samples. Increased concentrations were observed following base hydrolysis of extracts, leading to the discovery by LC-MS of a range of fatty acid esters of 6. Information on the structures of these acylated derivatives was provided through a series of mass spectrometric experiments, supported by partial synthesis, and it is proposed that the compounds are 28-O-acyl esters of 6. Although acyl esters of a range of other phycotoxins are known to form as metabolites in shellfish, this is the first report of their existence for this particular toxin class. The occurrence of pinnatoxins in North American shellfish further highlights the international distribution of these toxins.


Toxicon | 2008

Effects of cooking and heat treatment on concentration and tissue distribution of okadaic acid and dinophysistoxin-2 in mussels (Mytilus edulis) ☆

Pearse McCarron; Jane Kilcoyne; Philipp Hess

Using high-performance liquid chromatography with mass spectrometry, the influence of conventional steaming and another heat treatment on the level of okadaic acid and dinophysistoxin-2 in mussels (Mytilus edulis) was investigated. Concentration increases correlated with water loss during steaming, and increased distribution of okadaic acid and dinophysistoxin-2 from the digestive glands to the remainder tissues was observed as a result of the processes examined. This suggests that the analysis of whole flesh tissues, as opposed to dissected digestive glands, is more appropriate for regulatory purposes, particularly if cooked samples are being analysed. A systematic heat treatment experiment showed that while okadaic acid group toxins are stable during cooking processes, degradation does occur in mussel tissues after prolonged exposure to high temperatures. The findings of the studies reported here have importance in terms of the methodology applied in regulatory phycotoxin monitoring programmes. Therefore, options for sample pretreatment are discussed.


Journal of Chromatography A | 2015

High resolution mass spectrometry for quantitative analysis and untargeted screening of algal toxins in mussels and passive samplers.

Zita Zendong; Pearse McCarron; Christine Herrenknecht; Manoella Sibat; Zouher Amzil; Richard B. Cole; Philipp Hess

Measurement of marine algal toxins has traditionally focussed on shellfish monitoring while, over the last decade, passive sampling has been introduced as a complementary tool for exploratory studies. Since 2011, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been adopted as the EU reference method (No. 15/2011) for detection and quantitation of lipophilic toxins. Traditional LC-MS approaches have been based on low-resolution mass spectrometry (LRMS), however, advances in instrument platforms have led to a heightened interest in the use of high-resolution mass spectrometry (HRMS) for toxin detection. This work describes the use of HRMS in combination with passive sampling as a progressive approach to marine algal toxin surveys. Experiments focused on comparison of LRMS and HRMS for determination of a broad range of toxins in shellfish and passive samplers. Matrix effects are an important issue to address in LC-MS; therefore, this phenomenon was evaluated for mussels (Mytilus galloprovincialis) and passive samplers using LRMS (triple quadrupole) and HRMS (quadrupole time-of-flight and Orbitrap) instruments. Matrix-matched calibration solutions containing okadaic acid and dinophysistoxins, pectenotoxin, azaspiracids, yessotoxins, domoic acid, pinnatoxins, gymnodimine A and 13-desmethyl spirolide C were prepared. Similar matrix effects were observed on all instruments types. Most notably, there was ion enhancement for pectenotoxins, okadaic acid/dinophysistoxins on one hand, and ion suppression for yessotoxins on the other. Interestingly, the ion selected for quantitation of PTX2 also influenced the magnitude of matrix effects, with the sodium adduct typically exhibiting less susceptibility to matrix effects than the ammonium adduct. As expected, mussel as a biological matrix, quantitatively produced significantly more matrix effects than passive sampler extracts, irrespective of toxin. Sample dilution was demonstrated as an effective measure to reduce matrix effects for all compounds, and was found to be particularly useful for the non-targeted approach. Limits of detection and method accuracy were comparable between the systems tested, demonstrating the applicability of HRMS as an effective tool for screening and quantitative analysis. HRMS offers the advantage of untargeted analysis, meaning that datasets can be retrospectively analyzed. HRMS (full scan) chromatograms of passive samplers yielded significantly less complex data sets than mussels, and were thus more easily screened for unknowns. Consequently, we recommend the use of HRMS in combination with passive sampling for studies investigating emerging or hitherto uncharacterized toxins.


Analytical and Bioanalytical Chemistry | 2011

A mussel tissue certified reference material for multiple phycotoxins. Part 2: liquid chromatography-mass spectrometry, sample extraction and quantitation procedures

Pearse McCarron; Sabrina D. Giddings; Michael A. Quilliam

AbstractA freeze-dried mussel tissue certified reference material (CRM-FDMT1) containing multiple groups of shellfish toxins has been prepared. Toxin groups present in the material include okadaic acid and the dinophysistoxins, azaspiracids, yessotoxins, pectenotoxins, spirolides and domoic acid. In this work, analytical methods have been examined for the characterisation of the candidate CRM. A comprehensive extraction procedure was developed, which gave good recovery (>98%) for all lipophilic toxins studied. A fast liquid chromatography–mass spectrometry (LC-MS) method was developed that separates the major toxins according to the MS ionisation mode of optimum sensitivity. Matrix effects associated with analysis of these extracts using the developed LC-MS method were assessed. Standard addition and matrix-matched calibration procedures were evaluated to compensate for matrix effects. The methods and approaches will be used for the precise characterisation of the homogeneity and stability of the various toxins in CRM-FDMT1 and for the accurate assignment of certified values. The developed methods also have excellent potential for application in routine regulatory monitoring of shellfish toxins. FigureLC-MS/MS chromatogram of CRM-FDMT1: a mussel tissue CRM containing multiple groups of phycotoxins


Journal of Natural Products | 2014

Isolation, Structure Elucidation, Relative LC-MS Response, and in Vitro Toxicity of Azaspiracids from the Dinoflagellate Azadinium spinosum

Jane Kilcoyne; Ciara Nulty; Thierry Jauffrais; Pearse McCarron; Fabienne Hervé; Barry Foley; Frode Rise; Sheila Crain; Alistair L. Wilkins; Michael J. Twiner; Philipp Hess; Christopher O. Miles

We identified three new azaspiracids (AZAs) with molecular weights of 715, 815, and 829 (AZA33 (3), AZA34 (4), and AZA35, respectively) in mussels, seawater, and Azadinium spinosum culture. Approximately 700 μg of 3 and 250 μg of 4 were isolated from a bulk culture of A. spinosum, and their structures determined by MS and NMR spectroscopy. These compounds differ significantly at the carboxyl end of the molecule from known AZA analogues and therefore provide valuable information on structure-activity relationships. Initial toxicological assessment was performed using an in vitro model system based on Jurkat T lymphocyte cytotoxicity, and the potencies of 3 and 4 were found to be 0.22- and 5.5-fold that of AZA1 (1), respectively. Thus, major changes in the carboxyl end of 1 resulted in significant changes in toxicity. In mussel extracts, 3 was detected at low levels, whereas 4 and AZA35 were detected only at extremely low levels or not at all. The structures of 3 and 4 are consistent with AZAs being biosynthetically assembled from the amino end.


Chemical Research in Toxicology | 2014

Epimers of Azaspiracids: Isolation, Structural Elucidation, Relative LC-MS Response, and in Vitro Toxicity of 37-epi-Azaspiracid-1

Jane Kilcoyne; Pearse McCarron; Michael J. Twiner; Ciara Nulty; Sheila Crain; Michael A. Quilliam; Frode Rise; Alistair L. Wilkins; Christopher O. Miles

Since azaspiracid-1 (AZA1) was identified in 1998, the number of AZA analogues has increased to over 30. The development of an LC-MS method using a neutral mobile phase led to the discovery of isomers of AZA1, AZA2, and AZA3, present at ~2-16% of the parent analogues in phytoplankton and shellfish samples. Under acidic mobile phase conditions, isomers and their parents are not separated. Stability studies showed that these isomers were spontaneous epimerization products whose formation is accelerated with the application of heat. The AZA1 isomer was isolated from contaminated shellfish and identified as 37-epi-AZA1 by nuclear magnetic resonance (NMR) spectroscopy and chemical analyses. Similar analysis indicated that the isomers of AZA2 and AZA3 corresponded to 37-epi-AZA2 and 37-epi-AZA3, respectively. The 37-epimers were found to exist in equilibrium with the parent compounds in solution. 37-epi-AZA1 was quantitated by NMR, and relative molar response studies were performed to determine the potential differences in LC-MS response of AZA1 and 37-epi-AZA1. Toxicological effects were determined using Jurkat T lymphocyte cells as an in vitro cell model. Cytotoxicity experiments employing a metabolically based dye (i.e., MTS) indicated that 37-epi-AZA1 elicited a lethal response that was both concentration- and time-dependent, with EC50 values in the subnanomolar range. On the basis of EC50 comparisons, 37-epi-AZA1 was 5.1-fold more potent than AZA1. This data suggests that the presence of these epimers in seafood products should be considered in the analysis of AZAs for regulatory purposes.


Rapid Communications in Mass Spectrometry | 2013

Discovery of gymnodimine fatty acid ester metabolites in shellfish using liquid chromatography/mass spectrometry

P. de la Iglesia; Pearse McCarron; Jorge Diogène; Michael A. Quilliam

RATIONALE Gymnodimines (GYMs) are fast-acting toxins that belong to the cyclic imine group, a subclass of lipophilic marine toxins. GYMs are considered to be emerging toxins but have not yet been linked to incidents of human poisoning, Limited knowledge on the metabolism of GYMs means that a proper risk assessment has not been possible and caution must be taken when establishing the relevance of GYMs in terms of food safety of marine products. METHODS A series of mass spectrometric experiments involving precursor and product ion scans, selected reaction monitoring (SRM), and high-resolution mass spectrometry (MS) were used to detect and confirm 10-O-acyl esters of gymnodimine-A (1). RESULTS We have detected for the first time the presence of a range of acyl ester derivatives of GYMs in shellfish samples from the Gulf of Gabes, Tunisia. The MS fragmentation pathways of 1 and its esters were also elucidated. Partial synthesis of a palmitic acid ester of 1 facilitated confirmation of identity and calibration of SRM analyses. Evidence of acyl ester metabolites of gymnodimine-B and -C was also obtained. CONCLUSIONS A semi-quantitative analysis indicated that the majority of GYMs present in the sample were in the acylated form (>90%), suggesting that these compounds must not be neglected when trying to understand the risks associated with GYMs. There is a clear need for toxicology studies on these esters and assessment of bio-availability to humans.


Analytical and Bioanalytical Chemistry | 2011

A mussel tissue certified reference material for multiple phycotoxins. Part 1: design and preparation

Pearse McCarron; Håkan Emteborg; Ciara Nulty; Thomas Rundberget; Jared I. Loader; Katharina Teipel; Christopher O. Miles; Michael A. Quilliam; Philipp Hess

AbstractThe development of multi-analyte methods for lipophilic shellfish toxins based on liquid chromatography–mass spectrometry permits rapid screening and analysis of samples for a wide variety of toxins in a single run. Validated methods and appropriate certified reference materials (CRMs) are required to ensure accuracy of results. CRMs are essential for accurate instrument calibration, for assessing the complete analytical method from sample extraction to data analysis and for verifying trueness. However, CRMs have hitherto only been available for single toxin groups. Production of a CRM containing six major toxin groups was achieved through an international collaboration. Preparation of this material, CRM-FDMT1, drew on information from earlier studies as well as improved methods for isolation of toxins, handling bulk tissues and production of reference materials. Previous investigations of stabilisation techniques indicated freeze-drying to be a suitable procedure for preparation of shellfish toxin reference materials and applicable to a wide range of toxins. CRM-FDMT1 was initially prepared as a bulk wet tissue homogenate containing domoic acid, okadaic acid, dinophysistoxins, azaspiracids, pectenotoxin-2, yessotoxin and 13-desmethylspirolide C. The homogenate was then freeze-dried, milled and bottled in aliquots suitable for distribution and analysis. The moisture content and particle size distribution were measured, and determined to be appropriate. A preliminary toxin analysis of the final material showed a comprehensive toxin profile. FigureBottling of CRM-FDMT1

Collaboration


Dive into the Pearse McCarron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher O. Miles

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel G. Beach

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aifeng Li

Chinese Ministry of Education

View shared research outputs
Researchain Logo
Decentralizing Knowledge