Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peder S. Olofsson is active.

Publication


Featured researches published by Peder S. Olofsson.


Science | 2011

Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit

Mauricio Rosas-Ballina; Peder S. Olofsson; Mahendar Ochani; Sergio Valdes-Ferrer; Yaakov A. Levine; Colin Reardon; Michael W. Tusche; Valentin A. Pavlov; Ulf Andersson; Sangeeta Chavan; Tak W. Mak; Kevin J. Tracey

A neural circuit that involves a specialized population of memory T cells regulates the immune response. Neural circuits regulate cytokine production to prevent potentially damaging inflammation. A prototypical vagus nerve circuit, the inflammatory reflex, inhibits tumor necrosis factor–α production in spleen by a mechanism requiring acetylcholine signaling through the α7 nicotinic acetylcholine receptor expressed on cytokine-producing macrophages. Nerve fibers in spleen lack the enzymatic machinery necessary for acetylcholine production; therefore, how does this neural circuit terminate in cholinergic signaling? We identified an acetylcholine-producing, memory phenotype T cell population in mice that is integral to the inflammatory reflex. These acetylcholine-producing T cells are required for inhibition of cytokine production by vagus nerve stimulation. Thus, action potentials originating in the vagus nerve regulate T cells, which in turn produce the neurotransmitter, acetylcholine, required to control innate immune responses.


Nature | 2012

Novel role of PKR in inflammasome activation and HMGB1 release

Ben Lu; Takahisa Nakamura; Karen Inouye; Jianhua Li; Yiting Tang; Peter Lundbäck; Sergio Valdes-Ferrer; Peder S. Olofsson; Thomas Kalb; Jesse Roth; Yong-Rui Zou; Helena Erlandsson-Harris; Huan Yang; Jenny P.-Y. Ting; Haichao Wang; Ulf Andersson; Daniel J. Antoine; Sangeeta Chavan; Gökhan S. Hotamisligil; Kevin J. Tracey

The inflammasome regulates the release of caspase activation-dependent cytokines, including interleukin (IL)-1β, IL-18 and high-mobility group box 1 (HMGB1). By studying HMGB1 release mechanisms, here we identify a role for double-stranded RNA-dependent protein kinase (PKR, also known as EIF2AK2) in inflammasome activation. Exposure of macrophages to inflammasome agonists induced PKR autophosphorylation. PKR inactivation by genetic deletion or pharmacological inhibition severely impaired inflammasome activation in response to double-stranded RNA, ATP, monosodium urate, adjuvant aluminium, rotenone, live Escherichia coli, anthrax lethal toxin, DNA transfection and Salmonella typhimurium infection. PKR deficiency significantly inhibited the secretion of IL-1β, IL-18 and HMGB1 in E. coli-induced peritonitis. PKR physically interacts with several inflammasome components, including NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), NLRP1, NLR family CARD domain-containing protein 4 (NLRC4), absent in melanoma 2 (AIM2), and broadly regulates inflammasome activation. PKR autophosphorylation in a cell-free system with recombinant NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC, also known as PYCARD) and pro-caspase-1 reconstitutes inflammasome activity. These results show a crucial role for PKR in inflammasome activation, and indicate that it should be possible to pharmacologically target this molecule to treat inflammation.


Immunological Reviews | 2012

Rethinking inflammation: neural circuits in the regulation of immunity

Peder S. Olofsson; Mauricio Rosas-Ballina; Yaakov A. Levine; Kevin J. Tracey

Summary:  Neural reflex circuits regulate cytokine release to prevent potentially damaging inflammation and maintain homeostasis. In the inflammatory reflex, sensory input elicited by infection or injury travels through the afferent vagus nerve to integrative regions in the brainstem, and efferent nerves carry outbound signals that terminate in the spleen and other tissues. Neurotransmitters from peripheral autonomic nerves subsequently promote acetylcholine‐release from a subset of CD4+ T cells that relay the neural signal to other immune cells, e.g. through activation of α7 nicotinic acetylcholine receptors on macrophages. Here, we review recent progress in the understanding of the inflammatory reflex and discuss potential therapeutic implications of current findings in this evolving field.


Circulation | 2008

CD137 Is Expressed in Human Atherosclerosis and Promotes Development of Plaque Inflammation in Hypercholesterolemic Mice

Peder S. Olofsson; Leif Å. Söderström; Dick Wågsäter; Yuri Sheikine; Pauline Ocaya; François Lang; Catherine Rabu; Lieping Chen; Mats Rudling; Pål Aukrust; Ulf Hedin; Gabrielle Paulsson-Berne; Allan Sirsjö; Göran K. Hansson

Background— Atherosclerosis is a multifactorial disease in which inflammatory processes play an important role. Inflammation underlies lesion evolution at all stages, from establishment to plaque rupture and thrombosis. Costimulatory molecules of the tumor necrosis factor superfamily such as CD40/CD40L and OX40/OX40L have been implicated in atherosclerosis. Methods and Results— This study shows that the tumor necrosis factor superfamily members CD137 and CD137 ligand (CD137L), which play a major role in several autoimmune diseases, may constitute a pathogenic pair in atherogenesis. We detected CD137 protein in human atherosclerotic lesions not only on T cells but also on endothelial cells and showed that CD137 in cultured endothelial cells and smooth muscle cells was induced by proinflammatory cytokines implicated in atherosclerosis. Activation of CD137 by CD137L induced adhesion molecule expression on endothelial cells and reduced smooth muscle cell proliferation. In addition, treatment of atherosclerosis-prone apolipoprotein E–deficient mice with a CD137 agonist caused increased inflammation. T-cell infiltration, mainly of CD8+ cells, and expression of the murine major histocompatibility complex class II molecule I-Ab increased significantly in atherosclerotic lesions, as did the aortic expression of proinflammatory cytokines. Conclusions— Taken together, these observations suggest that CD137-CD137L interactions in the vasculature may contribute to the progression of atherosclerosis via augmented leukocyte recruitment, increased inflammation, and development of a more disease-prone phenotype.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Lymphocyte-derived ACh regulates local innate but not adaptive immunity

Colin Reardon; Gordon S. Duncan; Anne Brüstle; Dirk Brenner; Michael W. Tusche; Peder S. Olofsson; Mauricio Rosas-Ballina; Kevin J. Tracey; Tak W. Mak

Appropriate control of immune responses is a critical determinant of health. Here, we show that choline acetyltransferase (ChAT) is expressed and ACh is produced by B cells and other immune cells that have an impact on innate immunity. ChAT expression occurs in mucosal-associated lymph tissue, subsequent to microbial colonization, and is reduced by antibiotic treatment. MyD88-dependent Toll-like receptor up-regulates ChAT in a transient manner. Unlike the previously described CD4+ T-cell population that is stimulated by norepinephrine to release ACh, ChAT+ B cells release ACh after stimulation with sulfated cholecystokinin but not norepinephrine. ACh-producing B-cells reduce peritoneal neutrophil recruitment during sterile endotoxemia independent of the vagus nerve, without affecting innate immune cell activation. Endothelial cells treated with ACh in vitro reduced endothelial cell adhesion molecule expression in a muscarinic receptor-dependent manner. Despite this ability, ChAT+ B cells were unable to suppress effector T-cell function in vivo. Therefore, ACh produced by lymphocytes has specific functions, with ChAT+ B cells controlling the local recruitment of neutrophils.


Molecular Medicine | 2014

α7 Nicotinic Acetylcholine Receptor Signaling Inhibits Inflammasome Activation by Preventing Mitochondrial DNA Release

Ben Lu; Kevin Kwan; Yaakov A. Levine; Peder S. Olofsson; Huan Yang; Jianhua Li; Sonia Joshi; Haichao Wang; Ulf Andersson; Sangeeta Chavan; Kevin J. Tracey

The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide-induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release.


Molecular Medicine | 2012

α7 nicotinic acetylcholine receptor (α7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex.

Peder S. Olofsson; David Katz; Mauricio Rosas-Ballina; Yaakov A. Levine; Mahendar Ochani; Sergio Valdes-Ferrer; Valentin A. Pavlov; Kevin J. Tracey; Sangeeta Chavan

The immune response to infection or injury coordinates host defense and tissue repair, but also has the capacity to damage host tissues. Recent advances in understanding protective mechanisms have found neural circuits that suppress release of damaging cytokines. Stimulation of the vagus nerve protects from excessive cytokine production and ameliorates experimental inflammatory disease. This mechanism, the inflammatory reflex, requires the α7 nicotinic acetylcholine receptor (α7nAChR), a ligand-gated ion channel expressed on macrophages, lymphocytes, neurons and other cells. To investigate cell-specific function of α7nAChR in the inflammatory reflex, we created chimeric mice by cross-transferring bone marrow between wild-type (WT) and α7nAChR-deficient mice. Deficiency of α7nAChR in bone marrow-derived cells significantly impaired vagus nerve-mediated regulation of tumor necrosis factor (TNF), whereas α7nAChR deficiency in neurons and other cells had no significant effect. In agreement with recent work, the inflammatory reflex was not functional in nude mice, because functional T cells are required for the integrity of the pathway. To investigate the role of T-cell α7nAChR, we adoptively transferred α7nAChR-deficient or WT T cells to nude mice. Transfer of WT and α7nAChR-deficient T cells restored function, indicating that α7nAChR expression on T cells is not necessary for this pathway. Together, these results indicate that α7nAChR expression in bone marrow-derived non-T cells is required for the integrity of the inflammatory reflex.


Molecular Medicine | 2011

Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice

Sanjaya K. Satapathy; Mahendar Ochani; Meghan Dancho; Laqueta K. Hudson; Mauricio Rosas-Ballina; Sergio Valdes-Ferrer; Peder S. Olofsson; Yael Tobi Harris; Jesse Roth; Sangeeta Chavan; Kevin J. Tracey; Valentin A. Pavlov

Obesity, a serious and growing health threat, is associated with low-grade inflammation that plays a role in mediating its adverse consequences. Previously, we have discovered a role for neural cholinergic signaling in controlling inflammation, and demonstrated that the cholinergic agent galantamine suppresses excessive proinflammatory cytokine release. The main objective of this study was to examine the efficacy of galantamine, a clinically-approved drug, in alleviating obesity-related inflammation and associated complications. After 8 wks on a high-fat diet, C57BL/6J mice were treated with either galantamine (4 mg/kg, intraperitoneally (i.p.)) or saline for 4 wks in parallel with mice on a low-fat diet and treated with saline. Galantamine treatment of obese mice significantly reduced body weight, food intake, abdominal adiposity, plasma cytokine and adipokine levels, and significantly improved blood glucose, insulin resistance and hepatic steatosis. In addition, galantamine alleviated impaired insulin sensitivity and glucose intolerance significantly. These results indicate a previously unrecognized potential of galantamine in alleviating obesity, inflammation and other obesity-related complications in mice. These findings are of interest for studying the efficacy of this clinically-approved drug in the context of human obesity and metabolic syndrome.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

The Antiviral Cytomegalovirus Inducible Gene 5/Viperin Is Expressed in Atherosclerosis and Regulated by Proinflammatory Agents

Peder S. Olofsson; Ken Jatta; Dick Wågsäter; Sara Gredmark; Ulf Hedin; Gabrielle Paulsson-Berne; Cecilia Söderberg-Nauclér; Göran K. Hansson; Allan Sirsjö

Objective—Inflammatory processes play an important role in atherosclerosis, and increasing evidence implies that microbial pathogens and proinflammatory cytokines are involved in the development and activation of atherosclerotic lesions. To find new inflammatory genes, we explored the vascular transcriptional response to an activator of innate immunity bacterial lipopolysaccharides (LPSs). Methods and Results—Gene arrays identified the cytomegalovirus-inducible gene 5 (cig5)/viperin among the genes most potently induced by LPS in human vascular biopsies. Viperin was expressed by endothelial cells in atherosclerotic arteries and significantly elevated in atherosclerotic compared with normal arteries. In culture, cytomegalovirus infection, interferon-γ, and LPS induced viperin expression. Conclusion—Viperin is expressed in atherosclerosis and induced in vascular cells by inflammatory stimuli and cytomegalovirus infection. The putative functions of viperin in atherosclerosis may relate to disease-associated microbes.


Journal of Internal Medicine | 2013

HMGB1 mediates splenomegaly and expansion of splenic CD11b+ Ly‐6Chigh inflammatory monocytes in murine sepsis survivors

Sergio Valdes-Ferrer; Mauricio Rosas-Ballina; Peder S. Olofsson; Ben Lu; Meghan Dancho; Mahendar Ochani; Jianhua Li; Joshua A. Scheinerman; David Katz; Yaakov A. Levine; LaQueta Hudson; Huan Yang; Valentin A. Pavlov; Jesse Roth; Lionel Blanc; Daniel J. Antoine; Sangeeta Chavan; Ulf Andersson; Betty Diamond; Kevin J. Tracey

More than 500,000 hospitalized patients survive severe sepsis annually in the USA. Recent epidemiological evidence, however, demonstrated that these survivors have significant morbidity and mortality, with 3‐year fatality rates higher than 70%. To investigate the mechanisms underlying persistent functional impairment in sepsis survivors, here we developed a model to study severe sepsis survivors following cecal ligation and puncture (CLP).

Collaboration


Dive into the Peder S. Olofsson's collaboration.

Top Co-Authors

Avatar

Kevin J. Tracey

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sangeeta Chavan

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Valentin A. Pavlov

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Valdes-Ferrer

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mauricio Rosas-Ballina

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mahendar Ochani

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulf Andersson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Huan Yang

The Feinstein Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge