Pedram Khalili Amiri
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedram Khalili Amiri.
Nature Nanotechnology | 2014
Guoqiang Yu; Pramey Upadhyaya; Yabin Fan; Juan G. Alzate; Wanjun Jiang; Kin L. Wong; So Takei; Scott A. Bender; Li Te Chang; Ying Jiang; Murong Lang; Jianshi Tang; Yong Wang; Yaroslav Tserkovnyak; Pedram Khalili Amiri; Kang L. Wang
Magnetization switching by current-induced spin-orbit torques is of great interest due to its potential applications in ultralow-power memory and logic devices. The switching of ferromagnets with perpendicular magnetization is of particular technological relevance. However, in such materials, the presence of an in-plane external magnetic field is typically required to assist spin-orbit torque-driven switching and this is an obstacle for practical applications. Here, we report the switching of out-of-plane magnetized Ta/Co(20)Fe(60)B(20)/TaO(x) structures by spin-orbit torques driven by in-plane currents, without the need for any external magnetic fields. This is achieved by introducing a lateral structural asymmetry into our devices, which gives rise to a new field-like spin-orbit torque when in-plane current flows in these structures. The direction of the current-induced effective field corresponding to this field-like spin-orbit torque is out-of-plane, facilitating the switching of perpendicular magnets.
Physical Review Letters | 2012
Jian Zhu; J. A. Katine; Graham Rowlands; Y.-J. Chen; Zheng Duan; Juan G. Alzate; Pramey Upadhyaya; Juergen Langer; Pedram Khalili Amiri; Kang L. Wang; Ilya Krivorotov
We demonstrate excitation of ferromagnetic resonance in CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) by the combined action of voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (ST). Our measurements reveal that GHz-frequency VCMA torque and ST in low-resistance MTJs have similar magnitudes, and thus that both torques are equally important for understanding high-frequency voltage-driven magnetization dynamics in MTJs. As an example, we show that VCMA can increase the sensitivity of an MTJ-based microwave signal detector to the sensitivity level of semiconductor Schottky diodes.
Scientific Reports | 2013
Zhongming Zeng; G. Finocchio; Baoshun Zhang; Pedram Khalili Amiri; J. A. Katine; Ilya Krivorotov; Yiming Huai; Juergen Langer; B. Azzerboni; Kang L. Wang; H. Jiang
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.
Applied Physics Letters | 2011
Tao Wu; Alexandre Bur; Kin L. Wong; Ping Zhao; Christopher S. Lynch; Pedram Khalili Amiri; Kang L. Wang; Gregory P. Carman
We report giant reversible and permanent magnetic anisotropy reorientation between two perpendicular easy axes in a magnetoelectric polycrystalline Ni thin film and (011) oriented [Pb(Mg1/3Nb2/3)O3](1−x)-[PbTiO3]x (PMN-PT) heterostructure. The PMN-PT is partially poled prior to Ni film deposition to provide a remanent strain bias. Following Ni deposition and full poling of the sample, two giant remanent strains of equal and opposite values are used to reversibly and permanently reorient the magnetization state of the Ni film. These experimental results are integrated into micromagnetic simulation to demonstrate the usefulness of this approach for magnetoelectric based magnetic random access memory.
Applied Physics Letters | 2014
Sergiy Cherepov; Pedram Khalili Amiri; Juan G. Alzate; Kin L. Wong; Mark Lewis; Pramey Upadhyaya; Jayshankar Nath; Mingqiang Bao; Alexandre Bur; Tao Wu; Gregory P. Carman; Alexander Khitun; Kang L. Wang
In this work, we report on the demonstration of voltage-driven spin wave excitation, where spin waves are generated by multiferroic magnetoelectric (ME) cell transducers driven by an alternating voltage, rather than an electric current. A multiferroic element consisting of a magnetostrictive Ni film and a piezoelectric [Pb(Mg1/3Nb2/3)O3](1−x)–[PbTiO3]x substrate was used for this purpose. By applying an AC voltage to the piezoelectric, an oscillating electric field is created within the piezoelectric material, which results in an alternating strain-induced magnetic anisotropy in the magnetostrictive Ni layer. The resulting anisotropy-driven magnetization oscillations propagate in the form of spin waves along a 5 μm wide Ni/NiFe waveguide. Control experiments confirm the strain-mediated origin of the spin wave excitation. The voltage-driven spin wave excitation, demonstrated in this work, can potentially be used for low-dissipation spin wave-based logic and memory elements.
Journal of Applied Physics | 2011
Haibao Zhao; Andrew Lyle; Yumin Zhang; Pedram Khalili Amiri; Graham Rowlands; Zhongming Zeng; J. A. Katine; H. Jiang; K. Galatsis; Kang L. Wang; Ilya Krivorotov; Jian Ping Wang
This work investigated in-plane MgO-based magnetic tunnel junctions (MTJs) for the application of spin torque transfer random access memory (STT-RAM). The MTJ in this work had an resistance area product (RA) = 4.3 Ω·μm2, tunneling magnetoresistance ratio ∼135%, thermal stability factor Δ(H)=68 (by field measurement), and Δ(I) = 50 (by current measurement). The optimal writing energy was found to be 0.286 pJ per bit at 1.54 ns for antiparallel (AP) state to parallel (P) state switching, and 0.706 pJ per bit at 0.68 ns for P state to AP state switching. Ultra fast spin torque transfer (STT) switching was also observed in this sample at 580 ps (AP to P) and 560 ps (P to AP). As a result, 0.6–1.3 GHz was determined to be the optimal writing rate from writing energy consumption of view. These results show that in-plane MgO MTJs are still a viable candidate as the fast memory cell for STT-RAM.
ACS Nano | 2012
Zhongming Zeng; Pedram Khalili Amiri; Ilya Krivorotov; Hui Zhao; G. Finocchio; Jian Ping Wang; J. A. Katine; Yiming Huai; Juergen Langer; O Kosmas Galatsis; Kang L. Wang; H. Jiang
The excitation of the steady-state precessions of magnetization opens a new way for nanoscale microwave oscillators by exploiting the transfer of spin angular momentum from a spin-polarized current to a ferromagnet, referred to as spin-transfer nano-oscillators (STNOs). For STNOs to be practical, however, their relatively low output power and their relatively large line width must be improved. Here we demonstrate that microwave signals with maximum measured power of 0.28 μW and simultaneously narrow line width of 25 MHz can be generated from CoFeB-MgO-based magnetic tunnel junctions having an in-plane magnetized reference layer and a free layer with strong perpendicular anisotropy. Moreover, the generation efficiency is substantially higher than previously reported STNOs. The results will be of importance for the design of nanoscale alternatives to traditional silicon oscillators used in radio frequency integrated circuits.
Nano Letters | 2016
Guoqiang Yu; Pramey Upadhyaya; Xiang Li; Wenyuan Li; Se Kwon Kim; Yabin Fan; Kin L. Wong; Yaroslav Tserkovnyak; Pedram Khalili Amiri; Kang L. Wang
Magnetic skyrmions, which are topologically protected spin textures, are promising candidates for ultralow-energy and ultrahigh-density magnetic data storage and computing applications. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of available materials is limited, and there is a lack of electrical means to control skyrmions in devices. In this work, we demonstrate a new method for creating a stable skyrmion bubble phase in the CoFeB-MgO material system at room temperature, by engineering the interfacial perpendicular magnetic anisotropy of the ferromagnetic layer. Importantly, we also demonstrate that artificially engineered symmetry breaking gives rise to a force acting on the skyrmions, in addition to the current-induced spin-orbit torque, which can be used to drive their motion. This room-temperature creation and manipulation of skyrmions offers new possibilities to engineer skyrmionic devices. The results bring skyrmionic memory and logic concepts closer to realization in industrially relevant and manufacturable thin film material systems.
ChemInform | 2012
Pedram Khalili Amiri; Kang L. Wang
Electric-field-control of magnetism can dramatically improve the energy efficiency of spintronic devices and enhance the performance of magnetic memories. More generally, it expands the range of applications of nonvolatile spintronic devices, by making them energetically competitive compared to conventional semiconductor solutions for logic and computation, thereby potentially enabling a new generation of ultralow-power nonvolatile spintronic systems. This paper reviews recent experiments on the voltage-controlled magnetic anisotropy (VCMA) effect in thin magnetic films, and their device implications. The interfacial perpendicular anisotropy in layered magnetic material stacks, as well as its modulation by voltage, are discussed. Ferromagnetic resonance experiments and VCMA-induced high-frequency magnetization dynamics are reviewed. Finally, we discuss recent progress on voltage-induced switching of magnetic tunnel junction devices and its potential applications to magnetic random access memory (MRAM).
Applied Physics Letters | 2014
Juan G. Alzate; Pedram Khalili Amiri; Guoqiang Yu; Pramey Upadhyaya; J. A. Katine; Juergen Langer; Berthold Ocker; Ilya Krivorotov; Kang L. Wang
In this work, we experimentally study the temperature dependence of the perpendicular magnetic anisotropy (PMA) and of the voltage-controlled magnetic anisotropy (VCMA) in nanoscale MgO|CoFeB|Ta-based magnetic tunnel junctions. We demonstrate that the temperature dependences of both the PMA and the VCMA coefficient follow power laws of the saturation magnetization, but with different exponents. We also find that the linear dependence of the PMA on electric field is maintained over a wide temperature range, although the VCMA strength decreases faster as a function of temperature as compared to the PMA. Possible mechanisms leading to the different exponents are discussed.