Pedram Kharaziha
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedram Kharaziha.
Biochimica et Biophysica Acta | 2012
Pedram Kharaziha; Sophia Ceder; Qiao Li; Theocharis Panaretakis
Exosomes constitute the newest mode of intercellular communication, transmitting information between cells. This exchange of molecular information is facilitated by their unique composition which is enriched with enzymes, structural proteins, adhesion molecules, lipid rafts and RNAs. Following the discovery that cancer cells secrete excessive amounts of exosomes compared to normal cells, it became evident that i) these vesicles can be used as diagnostic markers; ii) their active secretion has functional implications, albeit unknown whether they are tumor promoting or suppressing. Notably, the interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma may promote the transfer of oncogenes (e.g. β-catenin, CEA, HER2, Melan-A/Mart-1 and LMP-1) and onco-microRNAs (e.g. let7, miR1, miR15, miR16 and miR375) from one cell to another, leading to the reprogramming of the recipient cells. The molecular composition and functional role of tumor cell-derived exosomes in tumorigenesis, metastasis and response to therapy are slowly decrypted and the latest findings as well as potential therapeutic strategies are discussed in this review.
Autophagy | 2009
Dan Grandér; Pedram Kharaziha; Edward Laane; Katja Pokrovskaja; Theoharis Panaretakis
Glucocorticoids are fundamental drugs used in the treatment of lymphoid malignancies with apoptotic cell death as the hitherto proposed mechanism of action. We have recently shown that dexamethasone induces autophagy in lymphoid leukemia cells and in this particular setting this cell death modality is a prerequisite for the efficient killing of the leukemic cells by dexamethasone.1 Hence, inhibition of autophagy by siRNA-mediated silencing of Beclin 1, as well as chemical inhibition of type III PtdIns3K, inhibits apoptosis, demonstrating an important role of autophagy in dexamethasone-induced cell death. In this brief report, we review these findings and introduce the Multiple Myeloma cells as a novel system to study autophagy in response to dexamethasone.
Cancer Research | 2012
Pedram Kharaziha; Hendrik De Raeve; Charlotte Fristedt; Qiao Li; Astrid Gruber; Per Johnsson; Georgia Kokaraki; Maria Panzar; Edward Laane; Anders Österborg; Boris Zhivotovsky; Helena Jernberg-Wiklund; Dan Grandér; Fredrik Celsing; Magnus Björkholm; Karin Vanderkerken; Theocharis Panaretakis
Multiple myeloma (MM) is a B-cell malignancy characterized by the expansion of clonal plasma blasts/plasma cells within the bone marrow that relies on multiple signaling cascades, including tyrosine kinase activated pathways, to proliferate and evade cell death. Despite emerging new treatment strategies, multiple myeloma remains at present incurable. Thus, novel approaches targeting several signaling cascades by using the multi-tyrosine kinase inhibitor (TKI), sorafenib, seem a promising treatment approach for multiple myeloma. Here, we show that sorafenib induces cell death in multiple myeloma cell lines and in CD138(+)-enriched primary multiple myeloma patient samples in a caspase-dependent and -independent manner. Furthermore, sorafenib has a strong antitumoral and -angiogenic activity in the 5T33MM mouse model leading to increased overall survival. Multiple myeloma cells undergo autophagy in response to sorafenib, and inhibition of this cytoprotective pathway potentiated the efficacy of this TKI. Mcl-1, a survival factor in multiple myeloma, is downregulated at the protein level by sorafenib allowing for the execution of cell death, as ectopic overexpression of this protein protects multiple myeloma cells. Concomitant targeting of Mcl-1 by sorafenib and of Bcl-2/Bcl-xL by the antagonist ABT737 improves the efficacy of sorafenib in multiple myeloma cell lines and CD138(+)-enriched primary cells in the presence of bone marrow stromal cells. Altogether, our data support the use of sorafenib as a novel therapeutic modality against human multiple myeloma, and its efficacy may be potentiated in combination with ABT737.
Cell Death and Disease | 2012
Pedram Kharaziha; Rodriguez P; Qiao Li; Rundqvist H; Ann-Charlotte Björklund; Augsten M; Ullén A; Lars Egevad; Peter Wiklund; Sten Nilsson; Guido Kroemer; Dan Grandér; Theocharis Panaretakis
Sorafenib, a multi-tyrosine kinase inhibitor, kills more effectively the non-metastatic prostate cancer cell line 22Rv1 than the highly metastatic prostate cancer cell line PC3. In 22Rv1 cells, constitutively active STAT3 and ERK are targeted by sorafenib, contrasting with PC3 cells, in which these kinases are not active. Notably, overexpression of a constitutively active MEK construct in 22Rv1 cells stimulates the sustained phosphorylation of Bad and protects from sorafenib-induced cell death. In PC3 cells, Src and AKT are constitutively activated and targeted by sorafenib, leading to an increase in Bim protein levels. Overexpression of constitutively active AKT or knockdown of Bim protects PC3 cells from sorafenib-induced killing. In both PC3 and 22Rv1 cells, Mcl-1 depletion is required for the induction of cell death by sorafenib as transient overexpression of Mcl-1 is protective. Interestingly, co-culturing of primary cancer-associated fibroblasts (CAFs) with 22Rv1 or PC3 cells protected the cancer cells from sorafenib-induced cell death, and this protection was largely overcome by co-administration of the Bcl-2 antagonist, ABT737. In summary, the differential tyrosine kinase profile of prostate cancer cells defines the cytotoxic efficacy of sorafenib and this profile is modulated by CAFs to promote resistance. The combination of sorafenib with Bcl-2 antagonists, such as ABT737, may constitute a promising therapeutic strategy against prostate cancer.
PLOS ONE | 2013
Helene Rundqvist; Martin Augsten; Anna Strömberg; Eric Rullman; Sara Mijwel; Pedram Kharaziha; Theocharis Panaretakis; Thomas Gustafsson; Arne Östman
Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum) and after completed exercise (exercise serum). The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.
Oncotarget | 2015
Pedram Kharaziha; Dimitris Chioureas; George Baltatzis; Pedro Fonseca; Patricia Rodriguez; Vladimir Gogvadze; Lena Lennartsson; Ann-Charlotte Björklund; Boris Zhivotovsky; Dan Grandér; Lars Egevad; Sten Nilsson; Theocharis Panaretakis
Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5−/− cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis.
Oncotarget | 2016
Paola Pellegrini; Matheus Dyczynski; Francesca Vittoria Sbrana; Maria Karlgren; Maria Buoncervello; Maria Hägg-Olofsson; Ran Ma; Johan Hartman; Svetlana Bajalica-Lagercrantz; Dan Grandér; Pedram Kharaziha; Angelo De Milito
Sustained autophagy contributes to the metabolic adaptation of cancer cells to hypoxic and acidic microenvironments. Since cells in such environments are resistant to conventional cytotoxic drugs, inhibition of autophagy represents a promising therapeutic strategy in clinical oncology. We previously reported that the efficacy of hydroxychloroquine (HCQ), an autophagy inhibitor under clinical investigation is strongly impaired in acidic tumor environments, due to poor uptake of the drug, a phenomenon widely associated with drug resistance towards many weak bases. In this study we identified salinomycin (SAL) as a potent inhibitor of autophagy and cytotoxic agent effective on several cancer cell lines under conditions of transient and chronic acidosis. Since SAL has been reported to specifically target cancer-stem cells (CSC), we used an established model of breast CSC and CSC derived from breast cancer patients to examine whether this specificity may be associated with autophagy inhibition. We indeed found that CSC-like cells are more sensitive to autophagy inhibition compared to cells not expressing CSC markers. We also report that the ability of SAL to inhibit mammosphere formation from CSC-like cells was dramatically enhanced in acidic conditions. We propose that the development and use of clinically suitable SAL derivatives may result in improved autophagy inhibition in cancer cells and CSC in the acidic tumor microenvironment and lead to clinical benefits.
The Prostate | 2015
Louise Dubois; Mats Stridsberg; Pedram Kharaziha; Dimitris Chioureas; Niels Meersman; Theocharis Panaretakis; K. Göran Ronquist
Prostasomes are nanosized extracellular vesicles exocytosed by prostate epithelial cells. They have been assigned many roles propitious to sperm in favor of fertilization. Prostatic cancer cells can also produce and secrete extracellular vesicles.
Autophagy | 2013
Pedram Kharaziha; Sophia Ceder; Claire Sanchez; Theocharis Panaretakis
Multiple myeloma (MM) comprises 1% of all malignancies and 10% of all hematological malignancies. MM is a malignancy of plasma cells in the bone marrow where complex and dynamic interactions with the bone marrow microenvironment lead to tumor progression, skeletal destruction and angiogenesis. Despite the discovery of several novel treatments against MM, including the proteasome inhibitor bortezomib, it is considered to be an incurable disease with an average 4–5 years overall survival.
International Journal of Oncology | 2010
Anders Ullén; Marianne Farnebo; Lena Thyrell; Salah Mahmoudi; Pedram Kharaziha; Lena Lennartsson; Dan Grandér; Theoharis Panaretakis; Sten Nilsson