Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro A. Jose is active.

Publication


Featured researches published by Pedro A. Jose.


Biochimica et Biophysica Acta | 2010

Dopamine and G protein-coupled receptor kinase 4 in the kidney: role in blood pressure regulation.

Pedro A. Jose; Patrício Soares-da-Silva; Gilbert M. Eisner; Robin A. Felder

Complex interactions between genes and environment result in a sodium-induced elevation in blood pressure (salt sensitivity) and/or hypertension that lead to significant morbidity and mortality affecting up to 25% of the middle-aged adult population worldwide. Determining the etiology of genetic and/or environmentally-induced high blood pressure has been difficult because of the many interacting systems involved. Two main pathways have been implicated as principal determinants of blood pressure since they are located in the kidney (the key organ responsible for blood pressure regulation), and have profound effects on sodium balance: the dopaminergic and renin-angiotensin systems. These systems counteract or modulate each other, in concert with a host of intracellular second messenger pathways to regulate sodium and water balance. In particular, the G protein-coupled receptor kinase type 4 (GRK4) appears to play a key role in regulating dopaminergic-mediated natriuresis. Constitutively activated GRK4 gene variants (R65L, A142V, and A486V), by themselves or by their interaction with other genes involved in blood pressure regulation, are associated with essential hypertension and/or salt-sensitive hypertension in several ethnic groups. GRK4γ 142Vtransgenic mice are hypertensive on normal salt intake while GRK4γ 486V transgenic mice develop hypertension only with an increase in salt intake. GRK4 gene variants have been shown to hyperphosphorylate, desensitize, and internalize two members of the dopamine receptor family, the D(1) (D(1)R) and D(3) (D(3)R) dopamine receptors, but also increase the expression of a key receptor of the renin-angiotensin system, the angiotensin type 1 receptor (AT(1)R). Knowledge of the numerous blood pressure regulatory pathways involving angiotensin and dopamine may provide new therapeutic approaches to the pharmacological regulation of sodium excretion and ultimately blood pressure control.


Endocrinology | 2011

Angiotensin III Stimulates Aldosterone Secretion from Adrenal Gland Partially via Angiotensin II Type 2 Receptor But Not Angiotensin II Type 1 Receptor

Junichi Yatabe; Minoru Yoneda; Midori Yatabe; Tsuyoshi Watanabe; Robin A. Felder; Pedro A. Jose; Hironobu Sanada

Angiotensin II (Ang II) and Ang III stimulate aldosterone secretion by adrenal glomerulosa, but the angiotensin receptor subtypes involved and the effects of Ang IV and Ang (1-7) are not clear. In vitro, different angiotensins were added to rat adrenal glomerulosa, and aldosterone concentration in the medium was measured. Ang II-induced aldosterone release was blocked (30.3 ± 7.1%) by an Ang II type 2 receptor (AT2R) antagonist, PD123319. Candesartan, an Ang II type 1 receptor (AT1R) antagonist, also blocked Ang II-induced aldosterone release (42.9 ± 4.8%). Coadministration of candesartan and PD123319 almost abolished the Ang II-induced aldosterone release. A selective AT2R agonist, CGP42112, was used to confirm the effects of AT2R. CGP42112 increased aldosterone secretion, which was almost completely inhibited by PD123319. In addition to Ang II, Ang III also induced aldosterone release, which was not blocked by candesartan. However, PD123319 blocked 22.4 ± 10.5% of the Ang III-induced aldosterone secretion. Ang IV and Ang (1-7) did not induce adrenal aldosterone secretion. In vivo, both Ang II and Ang III infusion increased plasma aldosterone concentration, but only Ang II elevated blood pressure. Ang IV and Ang (1-7) infusion did not affect blood pressure or aldosterone concentration. In conclusion, this report showed for the first time that AT2R partially mediates Ang III-induced aldosterone release, but not AT1R. Also, over 60% of Ang III-induced aldosterone release may be independent of both AT1R and AT2R. Ang III and AT2R signaling may have a role in the pathophysiology of aldosterone breakthrough.


Hypertension | 2012

Role of Renal DJ-1 in the Pathogenesis of Hypertension Associated With Increased Reactive Oxygen Species Production

Santiago Cuevas; Yanrong Zhang; Yu Yang; Crisanto S. Escano; Laureano D. Asico; Ines Armando; Pedro A. Jose

The D2 dopamine receptor (D2R) is important in the pathogenesis of essential hypertension. We have already reported that systemic deletion of the D2R gene in mice results in reactive oxygen species (ROS)-dependent hypertension, suggesting that the D2R has antioxidant effects. However, the mechanism of this effect is unknown. DJ-1 is a protein that has antioxidant properties. D2R and DJ-1 are expressed in the mouse kidney and colocalize and coimunoprecipitate in mouse renal proximal tubule cells. We hypothesized that D2Rs regulate renal ROS production in the kidney through regulation of DJ-1 expression or function. Heterozygous D2+/− mice have increased blood pressure, urinary 8-isoprostanes, and renal Nox 4 expression, but decreased renal DJ-1 expression. Silencing D2R expression in mouse renal proximal tubule cells increases ROS production and decreases the expression of DJ-1. Conversely, treatment of these cells with a D2R agonist increases DJ-1 expression and decreases Nox 4 expression and NADPH oxidase activity, effects that are partially blocked by a D2R antagonist. Silencing DJ-1 expression in mouse renal proximal tubule cells increases ROS production and Nox 4 expression. Selective renal DJ-1 silencing by the subcapsular infusion of DJ-1 siRNA in mice increases blood pressure, renal Nox4 expression, and NADPH oxidase activity. These results suggest that the inhibitory effects of D2R on renal ROS production are at least, in part, mediated by a positive regulation of DJ-1 expression/function and that DJ-1 may have a role in the prevention of hypertension associated with increased ROS production.


Comprehensive Physiology | 2011

Dopamine and renal function and blood pressure regulation.

Ines Armando; Van Anthony M. Villar; Pedro A. Jose

Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.


Hypertension | 2010

Impaired Endothelial Function and Microvascular Asymmetrical Dimethylarginine in Angiotensin II–Infused Rats: Effects of Tempol

Dan Wang; Zaiming Luo; Xiaoyan Wang; Pedro A. Jose; John R. Falck; William J. Welch; Shakil Aslam; Tom Teerlink; Christopher S. Wilcox

Angiotensin (Ang) II causes endothelial dysfunction, which is associated with cardiovascular risk. We investigated the hypothesis that Ang II increases microvascular reactive oxygen species and asymmetrical dimethylarginine and switches endothelial function from vasodilator to vasoconstrictor pathways. Acetylcholine-induced endothelium-dependent responses of mesenteric resistance arterioles were assessed in a myograph and vascular NO and reactive oxygen species by fluorescent probes in groups (n=6) of male rats infused for 14 days with Ang II (200 ng/kg per minute) or given a sham infusion. Additional groups of Ang or sham-infused rats were given oral Tempol (2 mmol · L−1). Ang II infusion increased mean blood pressure (119±5 versus 89±7 mm Hg; P<0.005) and plasma malondialdehyde (0.57±0.02 versus 0.37±0.05 &mgr;mol · L−1; P<0.035) and decreased maximal endothelium-dependent relaxation (18±5% versus 54±6%; P<0.005) and hyperpolarizing (19±3% versus 29±3%; P<0.05) responses and NO activity (0.9±0.1 versus 1.6±0.2 U; P<0.01) yet enhanced endothelium-dependent contraction responses (23±5% versus 5±5%; P<0.05) and reactive oxygen species production (0.82±0.05 versus 0.15±0.03 U; P<0.01). Ang II decreased the expression of dimethylarginine dimethylaminohydrolase 2 and increased asymmetrical dimethylarginine in vessels (450±50 versus 260±35 pmol/mg of protein; P<0.01) but not plasma. Tempol prevented any significant changes with Ang II. In conclusion, Ang redirected endothelial responses from relaxation to contraction, reduced vascular NO, and increased asymmetrical dimethylarginine. These effects were dependent on reactive oxygen species and could, therefore, be targeted with effective antioxidant therapy.


Free Radical Biology and Medicine | 2012

Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase

Yu Yang; Yanrong Zhang; Santiago Cuevas; Van Anthony M. Villar; Crisanto S. Escano; Laureano D. Asico; Peiying Yu; David K. Grandy; Robin A. Felder; Ines Armando; Pedro A. Jose

The dopamine D(2) receptor (D(2)R) regulates renal reactive oxygen species (ROS) production, and impaired D(2)R function results in ROS-dependent hypertension. Paraoxonase 2 (PON2), which belongs to the paraoxonase gene family, is expressed in various tissues, acting to protect against cellular oxidative stress. We hypothesized that PON2 may be involved in preventing excessive renal ROS production and thus may contribute to maintenance of normal blood pressure. Moreover, D(2)R may decrease ROS production, in part, through regulation of PON2. D(2)R colocalized with PON2 in the brush border of mouse renal proximal tubules. Renal PON2 protein was decreased (-33±6%) in D(2)(-/-) relative to D(2)(+/+) mice. Renal subcapsular infusion of PON2 siRNA decreased PON2 protein expression (-55%), increased renal oxidative stress (2.2-fold), associated with increased renal NADPH oxidase expression (Nox1, 1.9-fold; Nox2, 2.9-fold; and Nox4, 1.6-fold) and activity (1.9-fold), and elevated arterial blood pressure (systolic, 134±5 vs 93±6mmHg; diastolic, 97±4 vs 65±7mmHg; mean 113±4 vs 75±7mmHg). To determine the relevance of the PON2 and D(2)R interaction in humans, we studied human renal proximal tubule cells. Both D(2)R and PON2 were found in nonlipid and lipid rafts and physically interacted with each other. Treatment of these cells with the D(2)R/D(3)R agonist quinpirole (1μM, 24h) decreased ROS production (-35±6%), associated with decreased NADPH oxidase activity (-32±3%) and expression of Nox2 (-41±7%) and Nox4 (-47±8%) protein, and increased expression of PON2 mRNA (2.1-fold) and protein (1.6-fold) at 24h. Silencing PON2 (siRNA, 10nM, 48h) not only partially prevented the quinpirole-induced decrease in ROS production by 36%, but also increased basal ROS production (1.3-fold), which was associated with an increase in NADPH oxidase activity (1.4-fold) and expression of Nox2 (2.1-fold) and Nox4 (1.8-fold) protein. Inhibition of NADPH oxidase with diphenylene iodonium (10μM/30 min) inhibited the increase in ROS production caused by PON2 silencing. Our results suggest that renal PON2 is involved in the inhibition of renal NADPH oxidase activity and ROS production and contributes to the maintenance of normal blood pressure. PON2 is positively regulated by D(2)R and may, in part, mediate the inhibitory effect of renal D(2)R on NADPH oxidase activity and ROS production.


Archive | 1988

Renal Dopamine Receptors

Robin A. Felder; Christian C. Felder; Gilbert M. Eisner; Pedro A. Jose

Dopamine is an endogenous catecholamine that modulates many functions including behavior, movement, nerve conduction, hormone synthesis and release, blood pressure, and ion fluxes. Dopamine receptors in the brain have been classically divided into D1 and D2 subtypes, based on pharmacological data. However, molecular biology techniques have identified many more dopamine receptor subtypes. Several of the receptors cloned from the brain correspond to the classically described D1 and D2 receptors. Several D1 receptor subtypes have been cloned (D1A, D1B, and D5) and are each coupled to the stimulation of adenylyl cyclase. The D2 receptor has two isoforms, a shorter form, composed of 415 amino acids, is termed the D2short receptor. The long form, called the D2long receptor, is composed of 444 amino acids; both are coupled to the inhibition of adenylyl cyclase. The D3 and D4 receptors are closely related to, but clearly distinct from, the D2 receptor. They have not yet been linked to adenylyl cyclase activity. Outside of the central nervous system, the peripheral dopamine receptors have been classified into the DA1 and DA2 subtypes, on the basis of synaptic localization. The pharmacological properties of DA1 receptors roughly approximate those of D1 and D5 receptors, whereas those of DA2 receptors approximate those of D2 receptors. A renal dopamine receptor with some pharmacological features of the D2 receptor but not linked to adenylyl cyclase has been described in the renal cortex and inner medulla. In the inner medulla, this D2-like receptor, termed DA2k, is linked to stimulation of prostaglandin E2 production, apparently due to stimulation of phospholipase A2. Of the cloned dopamine receptors, only the mRNA of the D3 receptor has been reported in the kidney. The DA1 receptor in the kidney is associated with renal vasodilation and an increase in electrolyte excretion. The DA1-related vasodilation and inhibition of electrolyte transport is mediated by cAMP. The role of renal DA2 receptors remains to be clarified. Although DA1 and DA2 receptors may act in concert to decrease transport in the renal proximal convoluted tubule, the overall function of DA2 receptors may be actually the opposite of those noted for DA1 receptors. Dopamine has been postulated to act as an intrarenal natriuretic hormone. Moreover, an aberrant renal dopaminergic system may play a role in the pathogenesis of some forms of hypertension. A decreased renal production of dopamine and/or a defective transduction of the dopamine signal is/are present in some animal models of experimental hypertension as well as in some forms of human essential hypertension.


PLOS ONE | 2011

C-Terminal Di-leucine Motif of Dopamine D1 Receptor Plays an Important Role in Its Plasma Membrane Trafficking

Yan Guo; Pedro A. Jose

The dopamine D1 receptor (D1R), a G protein-coupled receptor, plays a critical role in regulating blood pressure through its actions on renal hemodynamics and epithelial ion transport, which are highly linked to its intracellular trafficking. In this study, we generated a series of C-terminal mutants of D1R that were tagged with or without enhanced yellow fluorescent protein, and analyzed the consequences of these mutants on the plasma membrane trafficking of D1R and cyclic AMP response to D1R stimulation. D1R with mutations within the endocytic recycling signal (amino acid residues 360–382) continued to be functional, albeit decreased relative to wild-type D1R. Mutation of the palmitoylation site (347C>S) of D1R did not impair its trafficking to the plasma membrane, but abolished its ability to increase cyclic AMP accumulation. In contrast, replacement of di-leucines (344–345L>A) by alanines resulted in the retention of D1R in the early endosome, decreased its glycosylation, and prevented its targeting to the plasma membrane. Our studies suggest that di-L motif at the C-terminus of D1R is critical for the glycosylation and cell surface targeting of D1R.


Journal of Biological Chemistry | 2013

Sorting nexin 1 loss results in D5 dopamine receptor dysfunction in human renal proximal tubule cells and hypertension in mice

Van Anthony M. Villar; Ines Armando; Laureano D. Asico; Crisanto S. Escano; Hewang Lee; Xiaoyan Wang; Yu Yang; Annabelle M. Pascua-Crusan; Cynthia Palmes-Saloma; Robin A. Felder; Pedro A. Jose

Background: SNX1 is a protein involved in the trafficking of internalized receptors. Results: Inhibition of SNX1 expression leads to failure of D5R endocytosis and signaling. Conclusion: Depletion SNX1 function results in D5R dysfunction and high blood pressure. Significance: Loss of SNX1 expression may be a novel mechanism for the development of hypertension. The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D5R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D5R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D5R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D5R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D5R trafficking and that SNX1 depletion results in D5R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension.


Archive | 1986

Development of Adrenergic and Dopamine Receptors in the Kidney

Robin A. Felder; Pedro A. Jose

The mechanism for the age related effects of adrenergic neurotransmitters, including dopamine, on the maturing kidney has not been fully evaluated. Since maturational changes in renal hemodynamics and sodium excretion cannot be entirely correlated with levels of renal or circulating catecholamines, changes at the receptor or postreceptor levels have to be considered.

Collaboration


Dive into the Pedro A. Jose's collaboration.

Top Co-Authors

Avatar

Robin A. Felder

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar

Ines Armando

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gilbert M. Eisner

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin A. Felder

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Yang

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peiying Yu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge