Pedro A. S. Salomão
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro A. S. Salomão.
Inventiones Mathematicae | 2015
Umberto L. Hryniewicz; Al Momin; Pedro A. S. Salomão
We consider Reeb flows on the tight 3-sphere admitting a pair of closed orbits forming a Hopf link. If the rotation numbers associated to the transverse linearized dynamics at these orbits fail to satisfy a certain resonance condition then there exist infinitely many periodic trajectories distinguished by their linking numbers with the components of the link. This result admits a natural comparison to the Poincaré–Birkhoff theorem on area-preserving annulus homeomorphisms. An analogous theorem holds on
Duke Mathematical Journal | 2011
Umberto L. Hryniewicz; Pedro A. S. Salomão
arXiv: Symplectic Geometry | 2015
Umberto L. Hryniewicz; Joan E. Licata; Pedro A. S. Salomão
SO(3)
Qualitative Theory of Dynamical Systems | 2004
Pedro A. S. Salomão
arXiv: Symplectic Geometry | 2013
Umberto L. Hryniewicz; Pedro A. S. Salomão
SO(3) and applies to geodesic flows of Finsler metrics on
The São Paulo Journal of Mathematical Sciences | 2012
Pedro A. S. Salomão; Joa Weber
Inventiones Mathematicae | 2018
Alberto Abbondandolo; Barney Bramham; Umberto L. Hryniewicz; Pedro A. S. Salomão
S^2
Ergodic Theory and Dynamical Systems | 2011
Wellington de Melo; Pedro A. S. Salomão; Edson Vargas
Mathematische Annalen | 2017
Alberto Abbondandolo; Barney Bramham; Umberto L. Hryniewicz; Pedro A. S. Salomão
S2.
arXiv: Symplectic Geometry | 2013
Naiara V. de Paulo; Pedro A. S. Salomão
We consider Reeb dynamics on the 3-sphere associated to a tight contact form. Our main result gives necessary and sufficient conditions for a periodic Reeb orbit to bound a disk-like global section for the Reeb flow, when the contact form is assumed to be non-degenerate.