Pedro Araujo
National Institute of Nutrition, Hyderabad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro Araujo.
Journal of Chromatography B | 2009
Pedro Araujo
Method validation may be regarded as one of the most well-known areas in analytical chemistry as is reflected in the substantial number of articles submitted and published in peer review journals every year. However, some of the relevant parameters recommended by regulatory bodies are often used interchangeably and incorrectly or are miscalculated, due to few references to evaluate some of the terms as well as wrong application of the mathematical and statistical approaches used in their estimation. These mistakes have led to misinterpretation and ambiguity in the terminology and in some instances to wrong scientific conclusions. In this article, the definitions of various relevant performance indicators such as selectivity, specificity, accuracy, precision, linearity, range, limit of detection, limit of quantitation, ruggedness, and robustness are critically discussed with a view to prevent their erroneous usage and ensure scientific correctness and consistency among publications.
PLOS ONE | 2010
Lise Madsen; Lone Møller Pedersen; Haldis H. Lillefosse; Even Fjære; Ingeborg Brønstad; Qin Hao; Rasmus Koefoed Petersen; Philip Hallenborg; Tao Ma; Rita De Matteis; Pedro Araujo; Josep Mercader; M. Luisa Bonet; Jacob B. Hansen; Barbara Cannon; Jan Nedergaard; Jun Wang; Saverio Cinti; Peter J. Voshol; Stein Ove Døskeland; Karsten Kristiansen
Background The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. Methodology/Principal Findings Here we report that cyclooxygenase (COX) activity and prostaglandin E2 (PGE2) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed β-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE2 receptor antagonists implicated EP4 as a main PGE2 receptor, and injection of the stable PGE2 analog (EP3/4 agonist) 16,16 dm PGE2 induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. Conclusions/Significance Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development.
Trends in Analytical Chemistry | 1996
Pedro Araujo; Richard G. Brereton
Abstract This series of three articles discusses the uses of experimental design in analytical chemistry. The three parts, entitled screening, optimization and quantification, respectively, are illustrated by examples taken from the literature. Screening is the first step in the efficient assessment of the factors involved in an analytical system under study. This article discusses full factorial designs, fractional factorial designs, Plackett and Burman designs and interpretation of numerical results.
Journal of Chromatography A | 2008
Pedro Araujo; Thu-Thao Nguyen; Livar Frøyland; Jingdong Wang; Jing X. Kang
A simplified method for quantitative analysis of fatty acids in various matrices by gas chromatography is proposed as an alternative to the conventional method and the variables of the protocol examined to optimize the processing conditions. The modified method involves direct methylation of fatty acids in homogenized samples with boron trihalide (BF(3) or BCl(3) in methanol) followed by extraction with hexane. The addition of hexane to the reaction mixture after the methylation process can enhance the efficiency of fatty acid methylation and is critical for those samples that contain high levels of triglycerides. A mechanism underlying this effect is proposed.
Molecular and Cellular Biology | 2010
Philip Hallenborg; Claus Jørgensen; Rasmus Koefoed Petersen; Søren Feddersen; Pedro Araujo; Patrick Markt; Thierry Langer; Gerhard Fürstenberger; Peter Krieg; Arjen Koppen; Eric Kalkhoven; Lise Madsen; Karsten Kristiansen
ABSTRACT The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is essential for adipogenesis. Although several fatty acids and their derivatives are known to bind and activate PPARγ, the nature of the endogenous ligand(s) promoting the early stages of adipocyte differentiation has remained enigmatic. Previously, we showed that lipoxygenase (LOX) activity is involved in activation of PPARγ during the early stages of adipocyte differentiation. Of the seven known murine LOXs, only the unconventional LOX epidermis-type lipoxygenase 3 (eLOX3) is expressed in 3T3-L1 preadipocytes. Here, we show that forced expression of eLOX3 or addition of eLOX3 products stimulated adipogenesis under conditions that normally require an exogenous PPARγ ligand for differentiation. Hepoxilins, a group of oxidized arachidonic acid derivatives produced by eLOX3, bound to and activated PPARγ. Production of hepoxilins was increased transiently during the initial stages of adipogenesis. Furthermore, small interfering RNA-mediated or retroviral short hairpin RNA-mediated knockdown of eLOX3 expression abolished differentiation of 3T3-L1 preadipocytes. Finally, we demonstrate that xanthine oxidoreductase (XOR) and eLOX3 synergistically enhanced PPARγ-mediated transactivation. Collectively, our results indicate that hepoxilins produced by the concerted action of XOR and eLOX3 may function as PPARγ activators capable of promoting the early PPARγ-dependent steps in the conversion of preadipocytes into adipocytes.
Biochimica et Biophysica Acta | 2013
Zhen-Yu Du; Tao Ma; Bjørn Liaset; Alison H. Keenan; Pedro Araujo; Erik-Jan Lock; Laurent Demizieux; Pascal Degrace; Livar Frøyland; Karsten Kristiansen; Lise Madsen
Reduced mitochondrial fatty acid (FA) β-oxidation can cause accumulation of triglyceride in liver, while intake of eicosapentaenoic acid (EPA) has been recommended as a promising novel therapy to decrease hepatic triglyceride content. However, reduced mitochondrial FA β-oxidation also facilitates accumulation of EPA. To investigate the interplay between EPA administration, mitochondrial activity and hepatic triglyceride accumulation, we investigated the effects of EPA administration to carnitine-deficient mice with impaired mitochondrial FA β-oxidation. C57BL/6J mice received a high-fat diet supplemented or not with 3% EPA in the presence or absence of 500 mg mildronate/kg/day for 10 days. Liver mitochondrial and peroxisomal oxidation, lipid classes and FA composition were determined. Histological staining was performed and mRNA level of genes related to lipid metabolism and inflammation in liver and adipose tissue was determined. Levels of pro-inflammatory eicosanoids and cytokines were measured in plasma. The results showed that mildronate treatment decreased hepatic carnitine concentration and mitochondrial FA β-oxidation and induced severe triglyceride accumulation accompanied by elevated systemic inflammation. Surprisingly, inclusion of EPA in the diet exacerbated the mildronate-induced triglyceride accumulation. This was accompanied by a considerable increase of EPA accumulation while decreased total n-3/n-6 ratio in liver. However, inclusion of EPA in the diet attenuated the mildronate-induced mRNA expression of inflammatory genes in adipose tissue. Taken together, dietary supplementation with EPA exacerbated the triglyceride accumulation induced by impaired mitochondrial FA β-oxidation. Thus, further thorough evaluation of the potential risk of EPA supplementation as a therapy for NAFLD associated with impaired mitochondrial FA oxidation is warranted.
Talanta | 2010
Yingxu Zeng; Pedro Araujo; Zhen-Yu Du; Thu-Thao Nguyen; Livar Frøyland; Bjørn Grung
Though liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS(2)) has been widely used in the structural elucidation of triacylglycerols (TAG) in vegetable oils, its potentiality for the identification of TAG molecules in omega-3 rich oils remains unexplored till date. Hence, this article investigates the applicability of LC-ESI-MS(2) for the structural characterization of naturally occurring TAG in cod liver oil without the TAG fractionation during the sample preparation. A computational algorithm was developed to automatically interpret the mass spectra and elucidate the TAG structures respectively. The results were compared against the lipase benchmark method. A principal component analysis study revealed that it is possible to discriminate genuine from adulterated cod liver oil.
Journal of Fish Diseases | 2010
L. Gil Martens; Erik-Jan Lock; Per Gunnar Fjelldal; Anna Wargelius; Pedro Araujo; Bente E. Torstensen; Paul Witten; Tom Hansen; Rune Waagbø; Robin Ørnsrud
Vegetable oils (Vo) are an alternative to fish oil (Fo) in aquaculture feeds. This study aimed to evaluate the effect of dietary soybean oil (Vo diet), rich in linoleic acid, and of dietary fish oil (Fo diet) on the development of spinal deformities under bacterial lipopolysaccharide (LPS)-induced chronic inflammation conditions in Atlantic salmon, Salmo salar L. Fish [25 g body weight (BW)] were fed the experimental diets for 99 days. On day 47 of feeding (40 g BW), fish were subjected to four experimental regimes: (i) intramuscular injections with LPS, (ii) sham-injected phosphate-buffered saline (PBS), (iii) intraperitoneally injected commercial oil adjuvant vaccine, or (iv) no treatment. The fish continued under a common feeding regime in sea water for 165 more days. Body weight was temporarily higher in the Vo group than in the Fo group prior to immunization and was also affected by the type of immunization. At the end of the trial, no differences were seen between the dietary groups. The overall prevalence of spinal deformities was approximately 14% at the end of the experiment. The Vo diet affected vertebral shape but did not induce spinal deformities. In groups injected with LPS and PBS, spinal deformities ranged between 21% and 38%, diet independent. Deformed vertebrae were located at or in proximity to the injection point. Assessment of inflammatory markers revealed high levels of plasma prostaglandin E₂ (PGE₂) in the Vo-fed and LPS-injected groups, suggesting an inflammatory response to LPS. Cyclooxigenase 2 (COX-2) mRNA expression in bone was higher in fish fed Fo compared to Vo-fed fish. Gene expression of immunoglobulin M (IgM) was up-regulated in bone of all LPS-injected groups irrespective of dietary oil. In conclusion, the study suggests that Vo is not a risk factor for the development of inflammation-related spinal deformities. At the same time, we found evidence that localized injection-related processes could trigger the development of vertebral body malformations.
Fish & Shellfish Immunology | 2013
M. Furné; Elisabeth Holen; Pedro Araujo; Kai Kristoffer Lie; Mari Moren
Primary head kidney leukocytes from Atlantic cod were isolated to evaluate the use of arachidonic acid and eicosapentaenoic acid by cyclooxygenases and the production of prostaglandins E₂ and E₃. The expression of cyclooxygenase genes and selected interleukin genes like Interleukin 1β, Interleukin 6, interleukin 8 and interleukin 10 were monitored. Increasing concentrations of eicosapentaenoic acid and arachidonic acid in equal amounts increased cyclooxygenase2 transcription as well as cell secretion of prostaglandin E₂. Even though the ratio of the two fatty acids was 1:1, the ratio between prostaglandin E₂ and E₃ was 50:1. The addition of arachidonic acid alone increased prostaglandin E₂ secretion but did not induce cyclooxygenase2 transcription. However, when the concentration of eicosapentaenoic acid was increased, maintaining arachidonic acid constant, both prostaglandin E₃ and prostaglandin E₂ production was induced and the prostaglandin E₂ production was higher than in cell cultures only added arachidonic acid. An up-regulation of cyclooxygenase2 transcription was also observed. The addition of the two fatty acids also affected the immune response by alteration of leukocytic cytokines gene expression. According to our results the Cyclooxygenase in cod seem to prefer arachidonic acid as substrate. Therefore, we suggest that the shift from marine oils (rich in n-3 fatty acids) to plant oils (higher in n-6 fatty acids) in the diet of commercially reared Atlantic cod could have negative effects on the whole organism through the increase in the production of prostaglandins belonging to those derived from n-6 fatty acids.
Fish & Shellfish Immunology | 2012
Elisabeth Holen; Kai Kristoffer Lie; Pedro Araujo; Pål A. Olsvik
Understanding pathogen recognition and mechanisms in Atlantic cod are of significant importance for both basic research on wild populations and health management in aquaculture. A microarray approach was utilized to search for effects of viral (polyinosinic acid:polycytidylic acid), bacterial (lipopolysaccharide) and polyclonal activator (phytohaemoagglutinin) stress in Atlantic cod head kidney cells. LPS cell activation increased mRNA expression of interleukin 8; interleukin-1β; cyclooxygenase 2; leukocyte derived chemotaxin 2; carboxyl-esterase 2 and environmental biomarker cytochrome P450 1A. Mitogen activated protein kinase p38 and cathepsin F were down regulated by LPS. The antiviral responses induced by double stranded RNA clearly increased transcription of Toll like receptor 3 and interferon stimulating gene 15. The phytohaemoagglutinin response seemed to be more non-specific. Special for the phytohaemoagglutinin induction was the increase in major histocompatibility complex class I. CC chemokine type 2 mRNA expression was increased by phytohaemoagglutinin, lipopolysaccharide and polyinosinic acid:polycytidylic acid, while mitogen activated protein kinase p38 and leukocyte derived chemotaxin 2 were down regulated by phytohaemoagglutinin. Oxidative stress related genes like catalase and glutaredoxin and the anti-apoptotic gene Bcl-2 showed no transcriptional changes compared to control in any of the treatments. Eicosanoids like prostaglandin 2, leukotriene B4 and B5 were constitutively produced by cod head kidney cells in vitro. The most remarkable feature of eicosanoid secretion is the higher production of leukotrienes against prostaglandins, indicating that the lipooxygenase pathway is preferred over the cyclooxygenase pathway. Although there were no significant differences in eicosanoid secretion between the groups, polyinosinic acid:polycytidylic acid showed a clear tendency to increase the levels of leukotriene B4 and B5. This study reveals distinct signatures of bacteria and virus transcriptional responses in cod head kidney cells. In addition, the novel finding that cytochrome P450 1A was upregulated during the antibacterial response indicates a connection between immunity and aryl hydrocarbon receptor activation in Atlantic cod.