Pedro Bekinschtein
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro Bekinschtein.
Neuron | 2007
Pedro Bekinschtein; Martín Cammarota; Lionel Muller Igaz; Lia R. M. Bevilaqua; Ivan Izquierdo; Jorge H. Medina
Persistence is the most characteristic attribute of long-term memory (LTM). To understand LTM, we must understand how memory traces persist over time despite the short-lived nature and rapid turnover of their molecular substrates. It is widely accepted that LTM formation is dependent upon hippocampal de novo protein synthesis and Brain-Derived Neurotrophic Factor (BDNF) signaling during or early after acquisition. Here we show that 12 hr after acquisition of a one-trial associative learning task, there is a novel protein synthesis and BDNF-dependent phase in the rat hippocampus that is critical for the persistence of LTM storage. Our findings indicate that a delayed stabilization phase is specifically required for maintenance, but not formation, of the memory trace. We propose that memory formation and memory persistence share some of the same molecular mechanisms and that recurrent rounds of consolidation-like events take place in the hippocampus for maintenance of the memory trace.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Pedro Bekinschtein; Martín Cammarota; Cynthia Katche; Leandro Slipczuk; Janine I. Rossato; Andrea Goldin; Ivan Izquierdo; Jorge H. Medina
Persistence is a characteristic attribute of long-term memories (LTMs). However, little is known about the molecular mechanisms that mediate this process. We recently showed that persistence of LTM requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Here, we show that intrahippocampal delivery of BDNF reverses the deficit in memory persistence caused by inhibition of hippocampal protein synthesis. Importantly, we demonstrate that BDNF induces memory persistence by itself, transforming a nonlasting LTM trace into a persistent one in an ERK-dependent manner. Thus, BDNF is not only necessary, but sufficient to induce a late postacquisition phase in the hippocampus essential for persistence of LTM storage.
The Neuroscientist | 2008
Pedro Bekinschtein; Martín Cammarota; Ivan Izquierdo; Jorge H. Medina
During the past decade, a large body of evidence has implicated BDNF in synaptic plasticity. In this review, we focus on the newer experiments that involve BDNF in different aspects of learning and memory processing—in particular, in memory persistence and storage. NEUROSCIENTIST 14(2):147—156, 2008. DOI: 10.1177/1073858407305850
PLOS ONE | 2009
Leandro Slipczuk; Pedro Bekinschtein; Cynthia Katche; Martín Cammarota; Ivan Izquierdo; Jorge H. Medina
Background The mammalian target of Rapamycin (mTOR) kinase plays a key role in translational control of a subset of mRNAs through regulation of its initiation step. In neurons, mTOR is present at the synaptic region, where it modulates the activity-dependent expression of locally-translated proteins independently of mRNA synthesis. Indeed, mTOR is necessary for different forms of synaptic plasticity and long-term memory (LTM) formation. However, little is known about the time course of mTOR activation and the extracellular signals governing this process or the identity of the proteins whose translation is regulated by this kinase, during mnemonic processing. Methodology/Principal Findings Here we show that consolidation of inhibitory avoidance (IA) LTM entails mTOR activation in the dorsal hippocampus at the moment of and 3 h after training and is associated with a rapid and rapamycin-sensitive increase in AMPA receptor GluR1 subunit expression, which was also blocked by intra-hippocampal delivery of GluR1 antisense oligonucleotides (ASO). In addition, we found that pre- or post-training administration of function-blocking anti-BDNF antibodies into dorsal CA1 hampered IA LTM retention, abolished the learning-induced biphasic activation of mTOR and its readout, p70S6K and blocked GluR1 expression, indicating that BDNF is an upstream factor controlling mTOR signaling during fear-memory consolidation. Interestingly, BDNF ASO hindered LTM retention only when given into dorsal CA1 1 h after but not 2 h before training, suggesting that BDNF controls the biphasic requirement of mTOR during LTM consolidation through different mechanisms: an early one involving BDNF already available at the moment of training, and a late one, happening around 3 h post-training that needs de novo synthesis of this neurotrophin. Conclusions/Significance In conclusion, our findings demonstrate that: 1) mTOR-mediated mRNA translation is required for memory consolidation during at least two restricted time windows; 2) this kinase acts downstream BDNF in the hippocampus and; 3) it controls the increase of synaptic GluR1 necessary for memory consolidation.
Neurobiology of Learning and Memory | 2007
Pedro Bekinschtein; Cynthia Katche; Leandro Slipczuk; Lionel M. Igaz; Martín Cammarota; Ivan Izquierdo; Jorge H. Medina
It is widely accepted that the formation of long-term memory (LTM) requires mRNA translation, but little is known about the cellular mechanisms in the brain that regulate this process. Mammalian target of rapamycin (mTOR) is a key regulator of translational efficacy and capacity. Here, we show that LTM formation of one-trial inhibitory avoidance (IA) in rats, a hippocampus-dependent fear-motivated learning task, requires mTOR activation. IA training is specifically associated with a rapid increase in the phosphorylation state of mTOR and its substrate ribosomal S6 kinase (p70S6K). Bilateral intra-CA1 infusion of rapamycin, a selective mTOR inhibitor, 15 min before, but not immediately after training completely hinders IA LTM without affecting short-term memory (STM) retention. Therefore, our findings indicate that the regulation of hippocampal mRNA translation is a major control step in memory consolidation.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Cynthia Katche; Pedro Bekinschtein; Leandro Slipczuk; Andrea Goldin; Ivan Izquierdo; Martín Cammarota; Jorge H. Medina
Memory formation is a temporally graded process during which transcription and translation steps are required in the first hours after acquisition. Although persistence is a key characteristic of memory storage, its mechanisms are scarcely characterized. Here, we show that long-lasting but not short-lived inhibitory avoidance long-term memory is associated with a delayed expression of c-Fos in the hippocampus. Importantly, this late wave of c-Fos is necessary for maintenance of inhibitory avoidance long-term storage. Moreover, inhibition of transcription in the dorsal hippocampus 24 h after training hinders persistence but not formation of long-term storage. These findings indicate that a delayed phase of transcription is essential for maintenance of a hippocampus-dependent memory trace. Our results support the hypothesis that recurrent rounds of consolidation-like events take place late after learning in the dorsal hippocampus to maintain memories.
Behavioural Brain Research | 2008
Jorge H. Medina; Pedro Bekinschtein; Martín Cammarota; Ivan Izquierdo
Memories are believed to be initially and temporarily stored in the hippocampus and later transferred to the cortex for persistent storage during a process named system consolidation. Alternatively, the cortex may also have a crucial role in the initial steps of memory formation and the hippocampus may not be disengaged from memory processing as early as it has been originally proposed. Here we review earlier and recent studies and hypotheses that address the nature of long-term memory storage.
Cell Reports | 2013
Pedro Bekinschtein; Brianne A. Kent; Charlotte Oomen; Gregory D. Clemenson; Fred H. Gage; Lisa M. Saksida; Timothy J. Bussey
Summary Successful memory involves not only remembering information over time, but also keeping memories distinct and less confusable. The computational process for making representations for similar input patterns more distinct from each other has been referred to as “pattern separation.” In this work, we developed a set of behavioral conditions that allowed us to manipulate the load for pattern separation at different stages of memory. Thus, we provide experimental evidence that a brain-derived neurotrophic factor (BDNF)-dependent pattern separation process occurs during the encoding/storage/consolidation, but not the retrieval stage of memory processing. We also found that a spontaneous increase in BDNF in the dentate gyrus of the hippocampus is associated with exposure to landmarks delineating similar, but not dissimilar, spatial locations, suggesting that BDNF is expressed on an “as-needed” basis for pattern separation.
Hippocampus | 2014
Pedro Bekinschtein; Brianne A. Kent; Charlotte Oomen; Gregory D. Clemenson; Fred H. Gage; Lisa M. Saksida; Timothy J. Bussey
Successful memory involves not only remembering information over time but also keeping memories distinct and less confusable. The computational process for making representations of similar input patterns more distinct from each other has been referred to as “pattern separation.” Although adult‐born immature neurons have been implicated in this memory feature, the precise role of these neurons and associated molecules in the processing of overlapping memories is unknown. Recently, we found that brain‐derived neurotrophic factor (BDNF) in the dentate gyrus is required for the encoding/consolidation of overlapping memories. In this study, we provide evidence that consolidation of these “pattern‐separated” memories requires the action of BDNF on immature neurons specifically.
The Journal of Neuroscience | 2013
Pedro Bekinschtein; María Renner; María Carolina González; Noelia V. Weisstaub
Often, retrieval cues are not uniquely related to one specific memory, which could lead to memory interference. Controlling interference is particularly important during episodic memory retrieval or when remembering specific events in a spatiotemporal context. Despite a clear involvement of prefrontal cortex (PFC) in episodic memory in human studies, information regarding the mechanisms and neurotransmitter systems in PFC involved in memory is scarce. Although the serotoninergic system has been linked to PFC functionality and modulation, its role in memory processing is poorly understood. We hypothesized that the serotoninergic system in PFC, in particular the 5-HT2A receptor (5-HT2AR) could have a role in the control of memory retrieval. In this work we used different versions of the object recognition task in rats to study the role of the serotoninergic modulation in the medial PFC (mPFC) in memory retrieval. We found that blockade of 5-HT2AR in mPFC affects retrieval of an object in context memory in a spontaneous novelty preference task, while sparing single-item recognition memory. We also determined that 5-HT2ARs in mPFC are required for hippocampal–mPFC interaction during retrieval of this type of memory, suggesting that the mPFC controls the expression of memory traces stored in the hippocampus biasing retrieval to the most relevant one.