Pedro Casero
University of Extremadura
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro Casero.
The Plant Cell | 2001
Ilda Casimiro; Alan Marchant; Rishikesh P. Bhalerao; Tom Beeckman; Sandra Dhooge; Ranjan Swarup; Neil S. Graham; Dirk Inzé; Göran Sandberg; Pedro Casero; Malcolm J. Bennett
Lateral root development in Arabidopsis provides a model for the study of hormonal signals that regulate postembryonic organogenesis in higher plants. Lateral roots originate from pairs of pericycle cells, in several cell files positioned opposite the xylem pole, that initiate a series of asymmetric, transverse divisions. The auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) arrests lateral root development by blocking the first transverse division(s). We investigated the basis of NPA action by using a cell-specific reporter to demonstrate that xylem pole pericycle cells retain their identity in the presence of the auxin transport inhibitor. However, NPA causes indoleacetic acid (IAA) to accumulate in the root apex while reducing levels in basal tissues critical for lateral root initiation. This pattern of IAA redistribution is consistent with NPA blocking basipetal IAA movement from the root tip. Characterization of lateral root development in the shoot meristemless1 mutant demonstrates that root basipetal and leaf acropetal auxin transport activities are required during the initiation and emergence phases, respectively, of lateral root development.
Trends in Plant Science | 2003
Ilda Casimiro; Tom Beeckman; Neil S. Graham; Rishikesh P. Bhalerao; Hanma Zhang; Pedro Casero; Göran Sandberg; Malcolm J. Bennett
Recent studies in the model plant Arabidopsis provide new insight into the regulation of root architecture, a key determinant of nutrient- and water-use efficiency in crops. Lateral root (LR) primordia originate from a subset of pericycle founder cells. Sophisticated mass-spectroscopy-based techniques have been used to map the sites of biosynthesis of auxin and its distribution in Arabidopsis seedlings, highlighting the importance of the phytohormone during LR initiation and emergence. Key components of the cell cycle and signal-transduction pathway(s) that promote and attenuate auxin-dependent LR initiation have recently been identified. Additional signals, such as abscisic acid and nitrate, also regulate LR emergence, raising intriguing questions about the cross-talk between their transduction pathways.
Planta | 1998
Pedro Casero; Ilda Casimiro; J. Paul Knox
Abstract. Monoclonal antibodies recognizing two classes of developmentally regulated plant cell surface components – arabinogalactan-proteins (AGPs) and extensins – have been used to immunolabel cells at the root apices of four species with different characteristics of pericycle and vascular tissue development. Root apices of pea (Pisum sativum L.), radish (Raphanus sativus L.), carrot (Daucus carota L.) and onion (Allium cepa L.) were immunolabelled with the anti-AGP monoclonal antibodies JIM4 and JIM13 and anti-extensin monoclonal antibodies JIM11, JIM12, JIM19 and JIM20. All of these antibodies recognized subsets of pericycle cells in at least one, but never all, of these species. The restricted patterns of epitope occurrence also reflected vascular cell development. The differences in patterns of antibody recognition in the four species are discussed in relation to the possible roles of these cell surface molecules in cell differentiation and root patterning events.
Protoplasma | 1995
Pedro Casero; Ilda Casimiro; P. G. Lloret
SummaryIn roots ofRaphanus sativus, Helianthus annuus, Zea mays, andDaucus carota, lateral root initiation occurs when a pair of neighbouring elongated and highly vacuolated pericycle cells in the same column almost simultaneously undergo asymmetrical transversal division. This produces a pair of very short pericycle cells lying end-to-end, flanked above and below by two longer cells. This occurs because both mitoses occur close to the ends of the neighbouring pericycle cells. The two longer daughter pericycle cells divide again later. In roots of radish, sunflower, and carrot these cells divide transversely and asymmetrically, producing more short cells adjacent to the previous ones. In corn roots, they undergo oblique divisions. Much later, the first pair of short pericycle cells undergoes periclinal divisions. Although such periclinal divisions of pericycle cells are generally thought to mark lateral root initiation, our results show that the first pair of short neighbouring pericycle cells in the same column offers another morphological criterion which permits identification of the site of lateral root initiation, both earlier and nearer to the apex than previously documented.
Plant Physiology | 2012
Concepción Manzano; Elena Ramirez-Parra; Ilda Casimiro; Sofía Otero; Bénédicte Desvoyes; Bert De Rybel; Tom Beeckman; Pedro Casero; Crisanto Gutierrez; Juan Carlos del Pozo
In plants, lateral roots originate from pericycle founder cells that are specified at regular intervals along the main root. Here, we show that Arabidopsis (Arabidopsis thaliana) SKP2B (for S-Phase Kinase-Associated Protein2B), an F-box protein, negatively regulates cell cycle and lateral root formation as it represses meristematic and founder cell divisions. According to its function, SKP2B is expressed in founder cells, lateral root primordia and the root apical meristem. We identified a novel motif in the SKP2B promoter that is required for its specific root expression and auxin-dependent induction in the pericycle cells. Next to a transcriptional control by auxin, SKP2B expression is regulated by histone H3.1/H3.3 deposition in a CAF-dependent manner. The SKP2B promoter and the 5′ end of the transcribed region are enriched in H3.3, which is associated with active chromatin states, over H3.1. Furthermore, the SKP2B promoter is also regulated by H3 acetylation in an auxin- and IAA14-dependent manner, reinforcing the idea that epigenetics represents an important regulatory mechanism during lateral root formation.
Plant Physiology | 2014
Concepción Manzano; Mercedes Pallero-Baena; Ilda Casimiro; Bert De Rybel; Beata Orman-Ligeza; Gert Van Isterdael; Tom Beeckman; Xavier Draye; Pedro Casero; Juan Carlos del Pozo
ROS signaling is crucial for lateral root emergence and root growth, and it regulates distinct sets of genes in these processes. Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself.
Chemosphere | 2012
Mercedes García-Sánchez; Inmaculada Garrido; Ilda Casimiro; Pedro Casero; Francisco Espinosa; Inmaculada García-Romera; Elisabet Aranda
ADOR is an aqueous extract obtained from the dry olive mill residue (DOR) which contains the majority of its soluble phenolic compounds, which are responsible for its phytotoxic properties. Some studies have shown that ADOR negatively affects seed germination. However, to date, few studies have been carried out on the effect of ADOR on the oxidative stress of the plant. It is well known that saprobe fungi can detoxify these phenolic compounds and reduce the potential negative effects of ADOR on plants. To gain a better understanding of the phytotoxic effects and oxidative stress caused by this residue, tomato seeds were germinated in the presence of ADOR, treated and untreated with Coriolopsis rigida, Trametes versicolor, Pycnoporus cinnabarinus and Penicillium chrysogenum-10 saprobe fungi. ADOR sharply reduced tomato seed germination and also generated high levels of malondialdehyde (MDA), O(2)(-) and H(2)O(2). However, bioremediated ADOR did not negatively affect germination and reduced MDA, O(2)(-) and H(2)O(2) content in different ways depending on the fungus used. In addition, the induced defense response was studied by analyzing the activity of both antioxidant enzymes (superoxide dismutase (SOD), catalase, ascorbate peroxidasa, glutathione reductase (GR), peroxidases and coniferil alcohol peroxidasa) and detoxification enzymes (glutathione-S-transferase (GST)). Our findings suggest that, because ADOR is capable of inducing oxidative stress, tomato seedlings trigger a defense response through SOD, GR, and GST activity and through antioxidant and lignification processes. On the other hand, the bioremediation of ADOR plays an important role in counteracting the oxidative stress induced by the untreated residue.
Protoplasma | 1995
Pedro Casero; J. P. Knox
SummaryThe use of the anti-pectin monoclonal antibody JIM5 in conjunction with immunofluorescence microscopy and also confocal microscopy has indicated that the JIM5 epitope is associated with structural features of the plasma-membrane-face of the cell wall of tomato pericarp cells. JIM5 recognized the primary pit fields of the cell walls, as identified by co-staining with callose-reactive aniline blue. In addition, abundant linear arrays of the pectin epitope were observed to radiate out from the primary pit fields in parallel, as well as random, arrangements. These observations have implications for our understanding of the organization of the polymer networks that comprise the primary cell wall.
Protoplasma | 1996
Pedro Casero; Ilda Casimiro; P. G. Lloret
SummaryFar from the apical meristem of adventitious roots ofAllium cepa, the pericycle shows great proliferative activity related to lateral root initiation. A group of mother pericycle cells undergoes asymmetrical transverse and periclinal divisions following a well-established pattern. Successive asymmetrical transverse divisions, progressing from one end of the cell to the other, divide the original mother cell into very short derivatives. Later, these short derivative cells undergo periclinal divisions. This proliferative activity starts nearly simultaneously in two elongated and highly vacuolated pericycle cells located in the same column in front of one of the xylem poles. Then proliferation expands centrifugally towards other pericycle cells in the same and adjacent columns. The proliferative activity of the pericycle cells decreases progressively outwards. Only the most central of these cells produce derivatives which contribute to the future lateral root.
PLOS ONE | 2012
Inmaculada Garrido; Mercedes García-Sánchez; Ilda Casimiro; Pedro Casero; Inmaculada García-Romera; J.A. Ocampo; Francisco Espinosa
The contamination of soils with dry olive-mill residue can represent a serious problem as being an environmental stressor in plants. It has been demonstrated that inoculation of aqueous extract of olive oil-mill residue (ADOR) with saprobe fungi removes some phenolic compounds. In this paper we studied the effect of ADOR uninoculated or inoculated with saprobe fungi in sunflower seedling roots. The germination and root growth, O2·- generation, superoxide dismutase (SOD) and extracellular peroxidases (EC-POXs) activities, and the content of some metabolites involved in the tolerance of stress were tested. The roots germinated in ADOR uninoculated show a decrease in meristem size, resulting in a reduction of the root length and fresh weight, and in the number of layers forming the cortex, but did not alter the dry weight, protein and soluble amino acid content. ADOR caused the decreases in O2·- generation and EC-POX′s activities and protein oxidation, but enhanced SOD activity, lipid peroxidation and proline content. Fluorescence imaging showed that ADOR induced O2·- and H2O2 accumulation in the roots. The increase in SOD and the decrease in EC-POX′s activities might be involved in the enhancement of H2O2 content and lipid peroxidation. Control roots treated with ADOR for 10 min show an oxidative burst. Roots germinated in ADOR inoculated with saprobe fungi partially recovered normal levels of ROS, morphological characteristics and antioxidant activities. These results suggested that treatment with ADOR caused a phytotoxic effect during germination inducing an oxidative stress. The inoculation of ADOR with saprobe fungi limited the stress.