Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro Castelo-Branco is active.

Publication


Featured researches published by Pedro Castelo-Branco.


Nature | 2012

Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma

Jeremy Schwartzentruber; Andrey Korshunov; Xiao Yang Liu; David T. W. Jones; Elke Pfaff; Karine Jacob; Dominik Sturm; Adam M. Fontebasso; Dong Anh Khuong Quang; Martje Tönjes; Volker Hovestadt; Steffen Albrecht; Marcel Kool; André Nantel; Carolin Konermann; Anders M. Lindroth; Natalie Jäger; Tobias Rausch; Marina Ryzhova; Jan O. Korbel; Thomas Hielscher; Péter Hauser; Miklós Garami; Almos Klekner; László Bognár; Martin Ebinger; Martin U. Schuhmann; Wolfram Scheurlen; Arnulf Pekrun; Michael C. Frühwald

Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.


Nature | 2014

Epigenomic alterations define lethal CIMP-positive ependymomas of infancy.

Stephen C. Mack; Hendrik Witt; Rosario M. Piro; Lei Gu; Scott Zuyderduyn; A. M. Stütz; Xiaosong Wang; Marco Gallo; Livia Garzia; Kory Zayne; Xiaoyang Zhang; Vijay Ramaswamy; Natalie Jäger; David T. W. Jones; Martin Sill; Trevor J. Pugh; M. Ryzhova; Khalida Wani; David Shih; Renee Head; Marc Remke; S. D. Bailey; Thomas Zichner; Claudia C. Faria; Mark Barszczyk; Sebastian Stark; Huriye Seker-Cin; Sonja Hutter; Pascal Johann; Sebastian Bender

Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland.


Nature Genetics | 2014

Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations

Pawel Buczkowicz; Christine M. Hoeman; Patricia Rakopoulos; Sanja Pajovic; Louis Letourneau; Misko Dzamba; Andrew Morrison; Peter W. Lewis; Eric Bouffet; Ute Bartels; Jennifer Zuccaro; Sameer Agnihotri; Scott Ryall; Mark Barszczyk; Yevgen Chornenkyy; Mathieu Bourgey; Guillaume Bourque; Alexandre Montpetit; Francisco Cordero; Pedro Castelo-Branco; Joshua Mangerel; Uri Tabori; King Ching Ho; Annie Huang; Kathryn R. Taylor; Alan Mackay; Javad Nazarian; Jason Fangusaro; Matthias A. Karajannis; David Zagzag

Diffuse intrinsic pontine glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children, with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and to the selection of therapies on the basis of assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic makeup of this brain cancer, with nearly 80% found to harbor a p.Lys27Met histone H3.3 or p.Lys27Met histone H3.1 alteration. However, DIPGs are still thought of as one disease, with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs, we integrated whole-genome sequencing with methylation, expression and copy number profiling, discovering that DIPGs comprise three molecularly distinct subgroups (H3-K27M, silent and MYCN) and uncovering a new recurrent activating mutation affecting the activin receptor gene ACVR1 in 20% of DIPGs. Mutations in ACVR1 were constitutively activating, leading to SMAD phosphorylation and increased expression of the downstream activin signaling targets ID1 and ID2. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer.


Journal of Clinical Oncology | 2013

Subgroup-Specific Prognostic Implications of TP53 Mutation in Medulloblastoma

Nataliya Zhukova; Vijay Ramaswamy; Marc Remke; Elke Pfaff; David Shih; Dianna Martin; Pedro Castelo-Branco; Berivan Baskin; Peter N. Ray; Eric Bouffet; André O. von Bueren; David Jones; Paul A. Northcott; Marcel Kool; Dominik Sturm; Trevor J. Pugh; Scott L. Pomeroy; Yoon-Jae Cho; Torsten Pietsch; Marco Gessi; Stefan Rutkowski; László Bognár; Almos Klekner; Byung Kyu Cho; Seung Ki Kim; Kyu Chang Wang; Charles G. Eberhart; Michelle Fèvre-Montange; Maryam Fouladi; Pim J. French

PURPOSE Reports detailing the prognostic impact of TP53 mutations in medulloblastoma offer conflicting conclusions. We resolve this issue through the inclusion of molecular subgroup profiles. PATIENTS AND METHODS We determined subgroup affiliation, TP53 mutation status, and clinical outcome in a discovery cohort of 397 medulloblastomas. We subsequently validated our results on an independent cohort of 156 medulloblastomas. RESULTS TP53 mutations are enriched in wingless (WNT; 16%) and sonic hedgehog (SHH; 21%) medulloblastomas and are virtually absent in subgroups 3 and 4 tumors (P < .001). Patients with SHH/TP53 mutant tumors are almost exclusively between ages 5 and 18 years, dramatically different from the general SHH distribution (P < .001). Children with SHH/TP53 mutant tumors harbor 56% germline TP53 mutations, which are not observed in children with WNT/TP53 mutant tumors. Five-year overall survival (OS; ± SE) was 41% ± 9% and 81% ± 5% for patients with SHH medulloblastomas with and without TP53 mutations, respectively (P < .001). Furthermore, TP53 mutations accounted for 72% of deaths in children older than 5 years with SHH medulloblastomas. In contrast, 5-year OS rates were 90% ± 9% and 97% ± 3% for patients with WNT tumors with and without TP53 mutations (P = .21). Multivariate analysis revealed that TP53 status was the most important risk factor for SHH medulloblastoma. Survival rates in the validation cohort mimicked the discovery results, revealing that poor survival of TP53 mutations is restricted to patients with SHH medulloblastomas (P = .012) and not WNT tumors. CONCLUSION Subgroup-specific analysis reconciles prior conflicting publications and confirms that TP53 mutations are enriched among SHH medulloblastomas, in which they portend poor outcome and account for a large proportion of treatment failures in these patients.


Lancet Oncology | 2013

Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study

Pedro Castelo-Branco; Sanaa Choufani; Stephen C. Mack; Denis Gallagher; Cindy Zhang; Tatiana Lipman; Nataliya Zhukova; Erin Walker; Dianna Martin; Diana Merino; Jonathan D. Wasserman; Cynthia Elizabeth; Noa Alon; Libo Zhang; Volker Hovestadt; Marcel Kool; David T. W. Jones; Gelareh Zadeh; Sidney Croul; Cynthia Hawkins; Johann Hitzler; Jean Cy Wang; Sylvain Baruchel; Peter Dirks; David Malkin; Stefan M. Pfister; Michael D. Taylor; Rosanna Weksberg; Uri Tabori

BACKGROUND Identification of robust biomarkers of malignancy and methods to establish disease progression is a major goal in paediatric neuro-oncology. We investigated whether methylation of the TERT promoter can be a biomarker for malignancy and patient outcome in paediatric brain tumours. METHODS For the discovery cohort, we used samples obtained from patients with paediatric brain tumours and individuals with normal brain tissues stored at the German Cancer Research Center (Heidelberg, Germany). We used methylation arrays for genome-wide assessment of DNA. For the validation cohort, we used samples obtained from several tissues for which full clinical and follow-up data were available from two hospitals in Toronto (ON, Canada). We did methylation analysis using quantitative Sequenom and pyrosequencing of an identified region of the TERT promoter. We assessed TERT expression by real-time PCR. To establish whether the biomarker could be used to assess and predict progression, we analysed methylation in paired samples of tumours that transformed from low to high grade and from localised to metastatic, and in choroid plexus tumours of different grades. Finally, we investigated overall survival in patients with posterior fossa ependymomas in which the identified region was hypermethylated or not. All individuals responsible for assays were masked to the outcome of the patients. FINDINGS Analysis of 280 samples in the discovery cohort identified one CpG site (cg11625005) in which 78 (99%) of 79 samples from normal brain tissues and low-grade tumours were not hypermethylated, but 145 (72%) of 201 samples from malignant tumours were hypermethylated (>15% methylated; p<0.0001). Analysis of 68 samples in the validation cohort identified a subset of five CpG sites (henceforth, upstream of the transcription start site [UTSS]) that was hypermethylated in all malignant paediatric brain tumours that expressed TERT but not in normal tissues that did not express TERT (p<0.0001). UTSS had a positive predictive value of 1.00 (95% CI 0.95-1.00) and a negative predictive value of 0.95 (0.87-0.99). In two paired samples of paediatric gliomas, UTSS methylation increased during transformation from low to high grade; it also increased in two paired samples that progressed from localised to metastatic disease. Two of eight atypical papillomas that had high UTSS methylation progressed to carcinomas, while the other six assessed did not progress or require additional treatment. 5-year overall survival was 51% (95% CI 31-71) for 25 patients with hypermethylated UTSS posterior fossa ependymomas and 95% (86-100) for 20 with non-hypermethylated tumours (p=0.0008). 5-year progression-free survival was 86% (68-100) for the 25 patients with non-hypermethylated UTSS tumours and 30% (10-50) for those with hypermethylated tumours (p=0.0008). INTERPRETATION Hypermethylation of the UTSS region in the TERT promoter is associated with TERT expression in cancers. In paediatric brain tumours, UTSS hypermethylation is associated with tumour progression and poor prognosis. This region is easy to amplify, and the assay to establish hypermethylation can be done on most tissues in most clinical laboratories. Therefore the UTSS region is a potentially accessible biomarker for various cancers. FUNDING The Canadian Institute of Health Research and the Terry Fox Foundation.


Journal of Clinical Oncology | 2015

BRAF Mutation and CDKN2A Deletion Define a Clinically Distinct Subgroup of Childhood Secondary High-Grade Glioma

Matthew Mistry; Nataliya Zhukova; Daniele Merico; Patricia Rakopoulos; Rahul Krishnatry; Mary Shago; James Stavropoulos; Noa Alon; Jason D. Pole; Peter N. Ray; Vilma Navickiene; Joshua Mangerel; Marc Remke; Pawel Buczkowicz; Vijay Ramaswamy; Ana Guerreiro Stucklin; Martin Li; Edwin J. Young; Cindy Zhang; Pedro Castelo-Branco; Doua Bakry; Suzanne Laughlin; Adam Shlien; Jennifer A. Chan; Keith L. Ligon; James T. Rutka; Peter Dirks; Michael D. Taylor; Mark T. Greenberg; David Malkin

PURPOSE To uncover the genetic events leading to transformation of pediatric low-grade glioma (PLGG) to secondary high-grade glioma (sHGG). PATIENTS AND METHODS We retrospectively identified patients with sHGG from a population-based cohort of 886 patients with PLGG with long clinical follow-up. Exome sequencing and array CGH were performed on available samples followed by detailed genetic analysis of the entire sHGG cohort. Clinical and outcome data of genetically distinct subgroups were obtained. RESULTS sHGG was observed in 2.9% of PLGGs (26 of 886 patients). Patients with sHGG had a high frequency of nonsilent somatic mutations compared with patients with primary pediatric high-grade glioma (HGG; median, 25 mutations per exome; P = .0042). Alterations in chromatin-modifying genes and telomere-maintenance pathways were commonly observed, whereas no sHGG harbored the BRAF-KIAA1549 fusion. The most recurrent alterations were BRAF V600E and CDKN2A deletion in 39% and 57% of sHGGs, respectively. Importantly, all BRAF V600E and 80% of CDKN2A alterations could be traced back to their PLGG counterparts. BRAF V600E distinguished sHGG from primary HGG (P = .0023), whereas BRAF and CDKN2A alterations were less commonly observed in PLGG that did not transform (P < .001 and P < .001 respectively). PLGGs with BRAF mutations had longer latency to transformation than wild-type PLGG (median, 6.65 years [range, 3.5 to 20.3 years] v 1.59 years [range, 0.32 to 15.9 years], respectively; P = .0389). Furthermore, 5-year overall survival was 75% ± 15% and 29% ± 12% for children with BRAF mutant and wild-type tumors, respectively (P = .024). CONCLUSION BRAF V600E mutations and CDKN2A deletions constitute a clinically distinct subtype of sHGG. The prolonged course to transformation for BRAF V600E PLGGs provides an opportunity for surgical interventions, surveillance, and targeted therapies to mitigate the outcome of sHGG.


Clinical Cancer Research | 2011

Neural Tumor-Initiating Cells Have Distinct Telomere Maintenance and Can be Safely Targeted for Telomerase Inhibition

Pedro Castelo-Branco; Cindy Zhang; Tatiana Lipman; Mayumi Fujitani; Loen M. Hansford; Ian Clarke; Calvin B. Harley; Robert Tressler; David Malkin; Erin Walker; David R. Kaplan; Peter Dirks; Uri Tabori

Purpose: Cancer recurrence is one of the major setbacks in oncology. Maintaining telomeres is essential for sustaining the limitless replicative potential of such cancers. Because telomerase is thought to be active in all tumor cells and normal stem cells, telomerase inhibition may be nonspecific and have detrimental effects on tissue maintenance and development by affecting normal stem cell self-renewal. Methods: We examined telomerase activity, telomere maintenance, and stem cell maturation in tumor subpopulations from freshly resected gliomas, long-term, primary, neural tumor-initiating cells (TIC) and corresponding normal stem cell lines. We then tested the efficacy of the telomerase inhibitor Imetelstat on propagation and self-renewal capacity of TIC and normal stem cells in vitro and in vivo. Results: Telomerase was undetectable in the majority of tumor cells and specific to the TIC subpopulation that possessed critically short telomeres. In contrast, normal tissue stem cells had longer telomeres and undetectable telomerase activity and were insensitive to telomerase inhibition, which results in proliferation arrest, cell maturation, and DNA damage in neural TIC. Significant survival benefit and late tumor growth arrest of neuroblastoma TIC were observed in a xenograft model (P = 0.02). Furthermore, neural TIC exhibited irreversible loss of self-renewal and stem cell capabilities even after cessation of treatment in vitro and in vivo. Conclusions: TIC exhaustion with telomerase inhibition and lack of telomerase dependency in normal stem cells add new dimensions to the telomere hypothesis and suggest that targeting TIC with telomerase inhibitors may represent a specific and safe therapeutic approach for tumors of neural origin. Clin Cancer Res; 17(1); 111–21. ©2011 AACR.


Cancer Research | 2012

Monoallelic Expression Determines Oncogenic Progression and Outcome in Benign and Malignant Brain Tumors

Erin Walker; Cindy Zhang; Pedro Castelo-Branco; Cynthia Hawkins; Wes Wilson; Nataliya Zhukova; Noa Alon; Ana Novokmet; Berivan Baskin; Peter N. Ray; Christiane B. Knobbe; Peter Dirks; Michael D. Taylor; Sidney Croul; David Malkin; Uri Tabori

Although monoallelic expression (MAE) is a frequent genomic event in normal tissues, its role in tumorigenesis remains unclear. Here we carried out single-nucleotide polymorphism arrays on DNA and RNA from a large cohort of pediatric and adult brain tumor tissues to determine the genome-wide rate of MAE, its role in specific cancer-related genes, and the clinical consequences of MAE in brain tumors. We also used targeted genotyping to examine the role of tumor-related genes in brain tumor development and specifically examined the clinical consequences of MAE at TP53 and IDH1. The genome-wide rate of tumor MAE was higher than in previously described normal tissue and increased with specific tumor grade. Oncogenes, but not tumor suppressors, exhibited significantly higher MAE in high-grade compared with low-grade tumors. This method identified nine novel genes highly associated with MAE. Within cancer-related genes, MAE was gene specific; hTERT was most significantly affected, with a higher frequency of MAE in adult and advanced tumors. Clinically, MAE at TP53 exists only in mutated tumors and increases with tumor aggressiveness. MAE toward the normal allele at IDH1 conferred worse survival even in IDH1 mutated tumors. Taken together, our findings suggest that MAE is tumor and gene specific, frequent in brain tumor subtypes, and may be associated with tumor progression/aggressiveness. Further exploration of MAE at relevant genes may contribute to better understanding of tumor development and determine survival in brain tumor patients.


International Journal of Cancer | 2016

Telomere dysfunction and chromothripsis

Aurélie Ernst; David T. W. Jones; Kendra Korinna Maass; Agata Rode; Katharina I. Deeg; Billy Michael Chelliah Jebaraj; Andrey Korshunov; Volker Hovestadt; Michael A. Tainsky; Kristian W. Pajtler; Sebastian Bender; Sebastian Brabetz; Susanne Gröbner; Marcel Kool; Frauke Devens; Jennifer Edelmann; Cindy Zhang; Pedro Castelo-Branco; Uri Tabori; David Malkin; Karsten Rippe; Stephan Stilgenbauer; Stefan M. Pfister; Marc Zapatka; Peter Lichter

Chromothripsis is a recently discovered form of genomic instability, characterized by tens to hundreds of clustered DNA rearrangements resulting from a single dramatic event. Telomere dysfunction has been suggested to play a role in the initiation of this phenomenon, which occurs in a large number of tumor entities. Here, we show that telomere attrition can indeed lead to catastrophic genomic events, and that telomere patterns differ between cells analyzed before and after such genomic catastrophes. Telomere length and telomere stabilization mechanisms diverge between samples with and without chromothripsis in a given tumor subtype. Longitudinal analyses of the evolution of chromothriptic patterns identify either stable patterns between matched primary and relapsed tumors, or loss of the chromothriptic clone in the relapsed specimen. The absence of additional chromothriptic events occurring between the initial tumor and the relapsed tumor sample points to telomere stabilization after the initial chromothriptic event which prevents further shattering of the genome.


Acta neuropathologica communications | 2014

WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma

Nataliya Zhukova; Vijay Ramaswamy; Marc Remke; Dianna Martin; Pedro Castelo-Branco; Cindy H. Zhang; Michael Fraser; Ken Tse; Raymond Poon; David Shih; Berivan Baskin; Peter N. Ray; Eric Bouffet; Peter Dirks; André O. von Bueren; Elke Pfaff; Andrey Korshunov; David T. W. Jones; Paul A. Northcott; Marcel Kool; Trevor J. Pugh; Scott L. Pomeroy; Yoon-Jae Cho; Torsten Pietsch; Marco Gessi; Stefan Rutkowski; László Bognár; Byung Kyu Cho; Charles G. Eberhart; Cécile Faure Conter

TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6% ± 8.7%, respectively (p < 0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89% ± 2% vs. 57.4% ± 1.8% (p < 0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p < 0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5% ± 1.5% in lithium treated cells vs. 56.6 ± 3% (p < 0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33% ± 8% for lithium treated cells vs. 27% ± 3% for untreated controls (p = 0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.

Collaboration


Dive into the Pedro Castelo-Branco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge