Pedro Cordeiro-Estrela
Federal University of Paraíba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro Cordeiro-Estrela.
PLOS ONE | 2013
Lívia Müller; Gislene L. Gonçalves; Pedro Cordeiro-Estrela; Jorge Reppold Marinho; Sérgio Luiz Althoff; André Filipe Testoni; Enrique González; Thales Renato Ochotorena de Freitas
Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c oxidase subunit I (COI) in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13 genera), mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24 species; 10 genera). Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles, which were reclassified after examination of external morphological characters and chromosome numbers. Distance and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in combination with other taxonomic and systematic procedures in an integrative framework and based on properly identified museum collections, to improve identification procedures, especially in epidemiological surveillance and ecological assessments.
Zootaxa | 2016
Anderson Feijó; Pedro Cordeiro-Estrela
Dasypus kappleri is the largest species of the genus Dasypus and is restricted to the Amazonian rainforest biome. Over the last century, related taxa have been described and synonymized without comprehensive analyses, and the current classification involving two subspecies, Dasypus k. kappleri and Dasypus k. pastasae, has never been revised. The aim of this work is to clarify the taxonomy of Dasypus kappleri through integrative morphological and morphometric analyses. We examined 70 specimens housed in scientific collections as well as photographs of the type specimens of five nominal taxa. Three methodologies (discrete characters, linear and geometric morphometrics) were employed. All results converged on the recognition of three allopatric groups, each with diagnostic qualitative and quantitative traits, that we recognize as full species: Dasypus kappleri Krauss, 1862, occurs in the Guiana shield; Dasypus pastasae (Thomas, 1901) is distributed from the eastern Andes of Peru, Ecuador, Colombia, and Venezuela south of the Orinoco River into the western Brazilian Amazon; and Dasypus beniensis Lönnberg, 1942, occurs in the lowlands of Amazonian Brazil and Bolivia to the south of the Madre de Dios, Madeira, and lower Amazon rivers. This revision raises to nine the number of living species of Dasypus.
Vector-borne and Zoonotic Diseases | 2015
Cibele R. Bonvicino; João Alves de Oliveira; Pedro Cordeiro-Estrela; Paulo S. D'Andrea; Alzira Maria Paiva de Almeida
Plague is a disease of epidemic potential that may emerge with discontinuous outbreaks. In South America, 50 wild rodent species have been identified as plague reservoirs, in addition to one lagomorph and two marsupials. To review the nomenclature of plague reservoirs, we examined specimens collected in plague foci, carried out new surveys in Brazilian plague regions, and re-evaluated the nomenclature of South American reservoirs on the basis of the current literature. Five of the 15 species involved with plague in Argentina, three of 10 species involved with plague in Bolivia, three of the seven species involved with plague in Peru, five of the nine species involved with plague in Ecuador, and six of the nine species involved with plague in Brazil have undergone taxonomic changes. In the last 20 years, plague cases were recorded in Bolivia, Brazil, Ecuador, and Peru. These four countries have a high rodent species richness in plague foci, a fact that may be decisive for the maintenance of plague in the wild.
Ecology | 2017
Fernando Parra dos Anjos Lima; Gabrielle Beca; Renata de Lara Muylaert; Clinton N. Jenkins; Miriam L. L. Perilli; Ana Maria de Oliveira Paschoal; Rodrigo Lima Massara; Adriano Pereira Paglia; Adriano Garcia Chiarello; Maurício Eduardo Graipel; Jorge J. Cherem; André Luis Regolin; Luiz Gustavo R. Oliveira Santos; Carlos R. Brocardo; Agustín Paviolo; Mario S. Di Bitetti; Leandro M. Scoss; Fabiana Lopes Rocha; Roberto Fusco‐Costa; Clarissa Alves da Rosa; Marina X. da Silva; Ludmila Hufnagell; Paloma Marques Santos; Gabriela Teixeira Duarte; Luiza N. Guimarães; Larissa L. Bailey; Flávio Henrique Guimarães Rodrigues; Heitor M. Cunha; Felipe M. Fantacini; Graziele O. Batista
Our understanding of mammal ecology has always been hindered by the difficulties of observing species in closed tropical forests. Camera trapping has become a major advance for monitoring terrestrial mammals in biodiversity rich ecosystems. Here we compiled one of the largest datasets of inventories of terrestrial mammal communities for the Neotropical region based on camera trapping studies. The dataset comprises 170 surveys of medium to large terrestrial mammals using camera traps conducted in 144 areas by 74 studies, covering six vegetation types of tropical and subtropical Atlantic Forest of South America (Brazil and Argentina), and present data on species composition and richness. The complete dataset comprises 53,438 independent records of 83 species of mammals, includes 10 species of marsupials, 15 rodents, 20 carnivores, eight ungulates and six armadillos. Species richness averaged 13 species (±6.07 SD) per site. Only six species occurred in more than 50% of the sites: the domestic dog Canis familiaris, crab-eating fox Cerdocyon thous, tayra Eira barbara, south American coati Nasua nasua, crab-eating raccoon Procyon cancrivorus and the nine-banded armadillo Dasypus novemcinctus. The information contained in this dataset can be used to understand macroecological patterns of biodiversity, community, and population structure, but also to evaluate the ecological consequences of fragmentation, defaunation, and trophic interactions.
Zootaxa | 2014
Anderson Feijó; Pedro Cordeiro-Estrela
We show that Dasypus mazzai Yepes 1933 is a senior synonym of Dasypus yepesi Vizcaíno 1995. We present morphological evidence that the holotype of D. mazzai is not a juvenile of Dasypus novemcinctus or any other species of this genus, but a distinct endemic species from northwestern Argentina undistinguishable from D. yepesi. Therefore, the correct name for the long-nosed armadillo of intermediate size occurring in the Argentinean provinces of Jujuy and Salta is Dasypus mazzai Yepes 1933.
Urban Ecosystems | 2017
Hannah Nunes; Fabiana Lopes Rocha; Pedro Cordeiro-Estrela
Urbanization is a widespread intense land use that generally results in biodiversity decline. Among the taxa capable to adapt to urban landscapes, bats are particularly ubiquitous. Brazil has one of the world’s largest diversity of bat species and one of the highest urbanization rates of the world. Yet, few studies have synthesized the biology of bats in urban environments, especially in Brazil. To fill this gap, we systematically reviewed the published scientific literature on the bat fauna found in urban areas of Brazil. The knowledge of urban bats is still incipient and heterogeneously spatially distributed, mostly concentrated in the southeastern region of the country. The assembled list of 84 urban species, of which nineteen are new species records for urban areas (including one new family), represents 47% of the bat richness registered in the country. Thirty-one bat species (37%) were captured exclusively inside forest fragments. Moreover, we provide information on the resources used within the urban matrix by summarizing the roosting sites for 38 bat species, as well as 31 plants consumed by at least twelve bat species. Regarding parasitological aspects, we listed eleven zoonotic parasites hosted by 27 bat species and discussed their potential to become a public health threat. Likewise, we considered the different features linked to urbanization, including impacts on immunity, body condition and susceptibility to acquiring parasites, as possible bat conservation issues. Finally, we defined an agenda for bat studies in urban areas of Brazil.
PLOS Neglected Tropical Diseases | 2016
Caio Graco Zeppelini; Alzira Maria Paiva de Almeida; Pedro Cordeiro-Estrela
As a zoonosis, Plague is also an ecological entity, a complex system of ecological interactions between the pathogen, the hosts, and the spatiotemporal variations of its ecosystems. Five reservoir system models have been proposed: (i) assemblages of small mammals with different levels of susceptibility and roles in the maintenance and amplification of the cycle; (ii) species-specific chronic infection models; (ii) flea vectors as the true reservoirs; (iii) Telluric Plague, and (iv) a metapopulation arrangement for species with a discrete spatial organization, following a source-sink dynamic of extinction and recolonization with naïve potential hosts. The diversity of the community that harbors the reservoir system affects the transmission cycle by predation, competition, and dilution effect. Plague has notable environmental constraints, depending on altitude (500+ meters), warm and dry climates, and conditions for high productivity events for expansion of the transmission cycle. Human impacts are altering Plague dynamics by altering landscape and the faunal composition of the foci and adjacent areas, usually increasing the presence and number of human cases and outbreaks. Climatic change is also affecting the range of its occurrence. In the current transitional state of zoonosis as a whole, Plague is at risk of becoming a public health problem in poor countries where ecosystem erosion, anthropic invasion of new areas, and climate change increase the contact of the population with reservoir systems, giving new urgency for ecologic research that further details its maintenance in the wild, the spillover events, and how it links to human cases.
Ecology | 2017
Marcos de Souza Lima Figueiredo; Camila S. Barros; Ana Cláudia Delciellos; Edú B. Guerra; Pedro Cordeiro-Estrela; Maja Kajin; Martín Roberto Del Valle Alvarez; Paulo Henrique Asfora; Diego Astúa; Helena Godoy Bergallo; Rui Cerqueira; Lena Geise; Rosana Gentile; Carlos Eduardo Viveiros Grelle; Gilson E. Iack-Ximenes; Leonardo C. Oliveira; Marcelo Weksler; Marcus Vinícius Vieira
Local abundance results from the interaction between populational and environmental processes. The abundance of the species in a community is also one of the most basic descriptors of its structure. Despite its importance, information about species abundances is fragmentary, creating a knowledge gap about species abundances known as the Prestonian Shortfall. Here we present a comprehensive data set of small mammal abundance in the Atlantic Forest. Data were extracted from 114 published sources and from unpublished data collected by our research groups spanning from 1943 to 2017. The data set includes 1,902 records of at least 111 species in 155 localities, totaling 42,617 individuals represented. We selected studies that (1) were conducted in forested habitats of the Atlantic Forest, (2) had a minimum sampling effort of at least 500 trap-nights, and (3) contained species abundance data in detail. For each study, we recorded (1) latitude and longitude, (2) name of the locality, (3) employed sampling effort, (4) type of traps used, (5) study year, (6) country, and (7) species name with (8) its respective abundances. For every locality, we also obtained information regarding its (9) ecoregion, (10) predominant vegetation type, and (11) biogeographic subdivision. Whenever necessary, we also (12) updated the species names as new species were described and some genera suffered taxonomic revision since the publication. The localities are spread across the Atlantic Forest and most of the small mammal species known to occur in Atlantic Forest are present in the data set, making it representative of communities of the entire biome. This data set can be used to address various patterns in community ecology and geographical ecology, as the relation between local abundance and environmental suitability, hypothesis regarding local and regional factors on community structuring, species abundance distributions (SAD), functional and phylogenetic mechanisms on community assembling.
PLOS ONE | 2018
Anderson Feijó; Bruce D. Patterson; Pedro Cordeiro-Estrela
Dasypus is the most speciose genus of the order Cingulata, including approximately 40% of known living armadillos. Nine species are currently recognized, although comprehensive analyses of the entire genus have never been done. Our aim is to revise the taxonomy of the long-nosed armadillos and properly define the taxa. We examined 2126 specimens of Dasypus preserved in 39 different museum collections, including 17 type specimens. Three complementary methods were applied to explore morphological datasets both qualitatively and quantitatively. Qualitative morphological variation in discrete characters was assessed by direct observations of specimens. Linear morphometric variation was based on external data and cranial measurements of 887 adult skulls. The shape and size of the skull was abstracted through two-dimensional geometric morphometric analyses of dorsal, lateral and ventral views of respectively 421, 211, and 220 adult specimens. Our results converge on the recognition of eight living species (D. beniensis, D. kappleri, D. mazzai, D. novemcinctus, D. pastasae, D. pilosus, D. sabanicola, and D. septemcinctus), and three subspecies of D. septemcinctus (D. s. septemcinctus, D. s. hybridus, and a new subspecies from Cordoba described here). Information on type material, diagnosis, distribution, and taxonomic comments for each taxon are provided. We designate a lectotype for D. novemcinctus; and a neotype for Loricatus hybridus (= D. septemcinctus hybridus).
BMC Veterinary Research | 2018
Michelle dos Santos Ferreira; Alexandro Guterres; Tatiana Rozental; Roberto Leonan M. Novaes; Emmanuel Messias Vilar; Renata Carvalho de Oliveira; Jorlan Fernandes; Danielle Forneas; Adonai Alvino Pessoa Júnior; Martha Brandão; José Luís Passos Cordeiro; Martín Roberto Del Valle Alvarez; Sérgio Luiz Althoff; Ricardo Moratelli; Pedro Cordeiro-Estrela; Rui Cerqueira da Silva; Elba Regina Sampaio de Lemos
BackgroundThe role of bats as reservoirs of zoonotic agents, especially pathogenic bacteria such as Bartonella and Coxiella, has been discussed around the world. Recent studies have identified bats as potential hosts of species from the proteobacteria phylum. In Brazil, however, the role of bats in the natural cycle of these agents is poorly investigated and generally neglected. In order to analyze the participation of bats in the epidemiology of diseases caused by Bartonella, Coxiella, Rickettsia, Anaplasma and Ehrlichia, we conducted a descriptive epidemiological study in three biogeographic regions of the Brazilian Atlantic Forest.ResultsTissues of 119 bats captured in preserved areas in the states of Rio de Janeiro, Bahia and Santa Catarina from 2014 to 2015 were submitted to molecular analysis using specific primers. Bartonella spp. was detected in 22 spleen samples (18.5%, 95% CI: 11.9–26.6), whose phylogenetic analysis revealed the generation of at least two independent clusters, suggesting that these may be new unique genotypes of Bartonella species. In addition, four samples (3.4%, 95% CI: 0.9–8.3) were positive for the htpAB gene of C. burnetii [spleen (2), liver (1) and heart (1)]. Rickettsia spp., Anaplasma and Ehrlichia were not identified. This is the first study reporting C. burnetii and Bartonella spp. infections in bats from the Atlantic Forest biome.ConclusionsThese findings shed light on potential host range for these bacteria, which are characterized as important zoonotic pathogens.
Collaboration
Dive into the Pedro Cordeiro-Estrela's collaboration.
Thales Renato Ochotorena de Freitas
Universidade Federal do Rio Grande do Sul
View shared research outputs