Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro Fevereiro is active.

Publication


Featured researches published by Pedro Fevereiro.


FEBS Letters | 1997

Identification of the human Lewisa carbohydrate motif in a secretory peroxidase from a plant cell suspension culture (Vaccinium myrtillus L.)

Nuno S. Melo; Manfred Nimtz; Harald S. Conradt; Pedro Fevereiro; Júlia Costa

This paper reports for the first time the presence of the human Lewisa type determinant in glycoproteins secreted by plant cells. A single glycopeptide was identified in the tryptic hydrolysis of the peroxidase VMPxC1 from Vaccinium myrtillus L. by HPLC/ESI‐MS. The oligosaccharide structures were elucidated by ESI‐MS‐MS and by methylation analysis before and after removal of fucose by mild acid hydrolysis. The major structure determined is of the biantennary plant complex type containing the outer chain motif Lewisa A corresponding fucosyltransferase activity catalyzing the formation of Lewisa type structures in vitro was identified in cellular extracts of the suspension cultures.


Journal of the Science of Food and Agriculture | 2001

Structural and chemical changes in cocoa (Theobroma cacao L) during fermentation, drying and roasting

Edy Sousa De Brito; Nelson Horacio Pezoa Garcia; M I Gallão; Angelo Luiz Cortelazzo; Pedro Fevereiro; Márcia R Braga

Cocoa seeds and pulp were fermented for 144 h, followed by natural drying. The tegument was removed and the cotyledons were broken into nibs which were roasted at 150 °C for 30 min. Non-fermented material, material fermented for 24, 48 and 72 h, material fermented for 144 h and then dried, and also the roasted nibs, were all prepared for chemical and microscopic analyses. Light microscopy revealed the presence of anionic and cationic residues and of neutral sugars. During fermentation there was a reduction in the cytoplasmic content of phenolic compounds and in the number of protein bodies. The cell wall showed a reduction in anionic residues and a loss of crystallinity. These alterations were maximum after 72 h. Drying and roasting increased the number of damaged cells and reduced the amount of cytoplasmic material. The chemical analyses generally confirmed the microscopy results. The concentration of amino-terminal groups and total free amino acids increased during fermentation (up to 72 h), but returned to the initial values after roasting. The principal chemical changes were related to reducing sugars, free amino acids, proteins and phenols, and PCA was suggested as a useful tool to compare different samples. Microscopic analysis revealed the degradation of protein and phenolic bodies and cellular damage during roasting. © 2000 Society of Chemical Industry


Plant Physiology | 2013

The Trehalose 6-Phosphate/SnRK1 Signaling Pathway Primes Growth Recovery following Relief of Sink Limitation

Cátia Nunes; Liam O'Hara; Lucia F. Primavesi; Thierry L. Delatte; Henriette Schluepmann; Govert W. Somsen; Anabela Bernardes da Silva; Pedro Fevereiro; Astrid Wingler; Matthew J. Paul

The T6P/SnRK1 mechanism of growth regulation responds to sink growth restriction and recovery following low-temperature limitation. Trehalose 6-P (T6P) is a sugar signal in plants that inhibits SNF1-related protein kinase, SnRK1, thereby altering gene expression and promoting growth processes. This provides a model for the regulation of growth by sugar. However, it is not known how this model operates under sink-limited conditions when tissue sugar content is uncoupled from growth. To test the physiological importance of this model, T6P, SnRK1 activities, sugars, gene expression, and growth were measured in Arabidopsis (Arabidopsis thaliana) seedlings after transfer to cold or zero nitrogen compared with sugar feeding under optimal conditions. Maximum in vitro activities of SnRK1 changed little, but T6P accumulated up to 55-fold, correlating with tissue Suc content in all treatments. SnRK1-induced and -repressed marker gene expression strongly related to T6P above and below a threshold of 0.3 to 0.5 nmol T6P g−1 fresh weight close to the dissociation constant (4 µm) of the T6P/ SnRK1 complex. This occurred irrespective of the growth response to Suc. This implies that T6P is not a growth signal per se, but through SnRK1, T6P primes gene expression for growth in response to Suc accumulation under sink-limited conditions. To test this hypothesis, plants with genetically decreased T6P content and SnRK1 overexpression were transferred from cold to warm to analyze the role of T6P/SnRK1 in relief of growth restriction. Compared with the wild type, these plants were impaired in immediate growth recovery. It is concluded that the T6P/SnRK1 signaling pathway responds to Suc induced by sink restriction that enables growth recovery following relief of limitations such as low temperature.


Euphytica | 2004

Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers

M. C. Vaz Patto; Zlatko Šatović; Silas E. Pêgo; Pedro Fevereiro

A collection of Portuguese maize accessions representing a valuable source of genes for introduction into modern cultivars is stored at the Portuguese Plant Germplasm Bank (Banco Português de Germoplasma Vegetal—BPGV). To assess genetic diversity among inbreds, microsatellite analysis was carried out for 54 inbred lines representing the diversity of Portuguese dent and flint maize germplasm. Fifty American and other European elite inbreds were also analysed for comparison. Fifteen microsatellite loci distributed throughout the maize genome were chosen based on their repeat unit and base composition. A total of 80 alleles were detected with an average allele number of 5.33 per locus. Polymorphism information content (PIC) values and observed genetic distances showed the existence of large variability among inbreds. Cluster analysis indicated that almost all of the inbreds could be distinguished from each other and Portuguese inbreds were present in all clusters formed. These associations were consistent with the known pedigree records of the inbreds, confirming a mixed origin of Portuguese materials. Comparative analysis of microsatellite diversity among groups was established according to important traits for both breeding and line identification. This revealed that, although most of the genetic diversity (>95%) was attributable to differences among inbreds of different groups, the existence of phenotypic differentiation in endosperm colour, kernel type and cob colour could be suggested for grouping. These findings support the joint use of molecular and morphological traits in management of the germplasm collection. In this study, SSR markers proved to be effective to characterise and identify maize inbred lines, and demonstrate associations among them.


Plant Physiology and Biochemistry | 2013

Inhibition of SnRK1 by metabolites: Tissue-dependent effects and cooperative inhibition by glucose 1-phosphate in combination with trehalose 6-phosphate

Cátia Nunes; Lucia F. Primavesi; Mitul K. Patel; Eleazar Martínez-Barajas; Stephen J. Powers; Ram Sagar; Pedro Fevereiro; Benjamin G. Davis; Matthew J. Paul

SnRK1 of the SNF1/AMPK group of protein kinases is an important regulatory protein kinase in plants. SnRK1 was recently shown as a target of the sugar signal, trehalose 6-phosphate (T6P). Glucose 6-phosphate (G6P) can also inhibit SnRK1 and given the similarity in structure to T6P, we sought to establish if each could impart distinct inhibition of SnRK1. Other central metabolites, glucose 1-phosphate (G1P), fructose 6-phosphate and UDP-glucose were also tested, and additionally ribose 5-phosphate (R5P), recently reported to inhibit SnRK1 strongly in wheat grain tissue. For the metabolites that inhibited SnRK1, kinetic models show that T6P, G1P and G6P each provide distinct regulation (50% inhibition of SnRK1 at 5.4 μM, 480 μM, >1 mM, respectively). Strikingly, G1P in combination with T6P inhibited SnRK1 synergistically. R5P, in contrast to the other inhibitors, inhibited SnRK1 in green tissues only. We show that this is due to consumption of ATP in the assay mediated by phosphoribulokinase during conversion of R5P to ribulose-1,5-bisphosphate. The accompanying loss of ATP limits the activity of SnRK1 giving rise to an apparent inhibition of SnRK1. Inhibition of SnRK1 by R5P in wheat grain preparations can be explained by the presence of green pericarp tissue; this exposes an important caveat in the assessment of potential protein kinase inhibitors. Data provide further insight into the regulation of SnRK1 by metabolites.


Genetic Resources and Crop Evolution | 2004

Genetic diversity in the Olive tree (Olea europaea L. subsp. europaea) cultivated in Portugal revealed by RAPD and ISSR markers

V.J.V. Gemas; M.C. Almadanim; Rogério Tenreiro; Ana Martins; Pedro Fevereiro

To assess the genetic diversity of the most important olive cultivars used in Portugal, a base collection was established with two hundred and one accessions of eleven cultivars from the different agro-ecological-regions (AER) of olive oil production. Inter-cultivar diversity was evaluated using seven RAPD primers producing fifty-nine polymorphic markers that enable cultivar distinction. Discriminant analysis according to fruit use and AER revealed a genetic structure associated with local selection both for fruit exploitation and agro-ecological adaptation. Intra-cultivar diversity of the ancient cultivar ‘Galega’ was also investigated. Three RAPD and five ISSR primers produced ninety-three polymorphic markers upon seventy-seven accessions from five AERs. Total accession discrimination was achieved. UPGMA clustering and discriminant analysis revealed that the genetic diversity was predominantly structured according to accessions origin. The within and among AER variation revealed by AMOVA supported this genetic structure and showed a high proportion of intra-AER variability. These evidences suggest that ‘Galega’ is composed by a mixture of different genotypes adapted to local conditions, indicating that this cultivar is in an early stage of domestication and should be treated as a landrace instead of a uniform cultivar. The assessment of ‘Galega’ genetic diversity within each of the five AERs indicated the highest significant level (Hg = 6.23 at p< 0.001) in “Ribatejo-Santarém”. This finding associated with the distinctiveness of ‘Galega’ in relation to other Portuguese cultivars and with the recent insights of olive tree domestication allowed us to hypothesize that ‘Ribatejo-Santarém’ was the ecological region of origin and dispersion of this ancient cultivar.


Trends in Biotechnology | 2011

Efficient H2 production via Chlamydomonas reinhardtii

Maria G. Esquível; Helena M. Amaro; Teresa S. Pinto; Pedro Fevereiro; F. Xavier Malcata

Molecular hydrogen (H(2)) obtained from biological sources provides an alternative to bulk chemical processes that is moving towards large-scale, economical generation of clean fuel for automotive engines. This opinion article examines recent improvements in H(2) production by wild and mutant strains of Chlamydomonas reinhardtii - the green microalga currently considered the best eukaryotic H(2) producer. Here, we review various aspects of genetic and metabolic engineering of C. reinhardtii, as well as of process engineering. Additionally, we lay out possible scenarios that would lead to more efficient research approaches in the near future, as part of a consistent strategy for sustainable biohydrogen supply.


Plant Cell Tissue and Organ Culture | 2002

Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula

Dulce M. Santos; Pedro Fevereiro

To investigate the involvement of methylation of DNA in somatic embryogenesis we initiated a comparative study using Medicago truncatula lines that have different capacities to produce somatic embryos. Treatment with the demethylating drug 5-azacytidine caused a loss of regeneration capacity in the embryogenic line by arresting the production of somatic embryos. Analysis with methylation-sensitive enzymes showed disruption of somatic embryogenesis competence to be correlated with rDNA demethylation. Our data suggest production of somatic embryos depends on a certain level of DNA methylation.


Plant Cell Reports | 1999

Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaertn cv. Jemalong

L. O. das Neves; S. R. L. Duque; J. S. de Almeida; Pedro Fevereiro

Medicago truncatula ssp Narbonensis and four genotypes of M. truncatula Gaertn cv. Jemalong were tested for their somatic embryogenesis potential using a two-step protocol. In the first step, embryogenic callus was induced in folioles isolated from shoots grown in vitro and cultured on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid and zeatin. In the second step, somatic embryos were allowed to develop from the induced callus in MS growth-regulator-free medium. Individual somatic embryos were then isolated and transferred again to growth regulator free medium where they formed secondary somatic embryos in repetitive cycles. Conversion of somatic embryos into plantlets was achieved by isolating late-torpedo-phase somatic embryos with distinct cotyledons and reculturing them onto MS growth regulator free medium. The system of repetitive somatic embryogenesis in M. truncatula described here represents a permanent source of embryogenic material that can be used for the genetic modification of this species.


New Phytologist | 2008

Molecular and phenotypic profiling from the base to the crown in maritime pine wood‐forming tissue

Jorge Paiva; Marcelo Garcés; Ana Alves; Pauline Garnier-Géré; José Carlos Rodrigues; Céline Lalanne; Stéphane Porcon; Grégoire Le Provost; Denilson Da Silva Perez; Jean Brach; Jean-Marc Frigerio; Stéphane Claverol; Aurélien Barré; Pedro Fevereiro; Christophe Plomion

Environmental, developmental and genetic factors affect variation in wood properties at the chemical, anatomical and physical levels. Here, the phenotypic variation observed along the tree stem was explored and the hypothesis tested that this variation could be the result of the differential expression of genes/proteins during wood formation. Differentiating xylem samples of maritime pine (Pinus pinaster) were collected from the top (crown wood, CW) to the bottom (base wood, BW) of adult trees. These samples were characterized by Fourier transform infrared spectroscopy (FTIR) and analytical pyrolysis. Two main groups of samples, corresponding to CW and BW, could be distinguished from cell wall chemical composition. A genomic approach, combining large-scale production of expressed sequence tags (ESTs), gene expression profiling and quantitative proteomics analysis, allowed identification of 262 unigenes (out of 3512) and 231 proteins (out of 1372 spots) that were differentially expressed along the stem. A good relationship was found between functional categories from transcriptomic and proteomic data. A good fit between the molecular mechanisms involved in CW-BW formation and these two types of wood phenotypic differences was also observed. This work provides a list of candidate genes for wood properties that will be tested in forward genetics.

Collaboration


Dive into the Pedro Fevereiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Araújo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Sofia Duque

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jorge Paiva

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Cunha

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José M. Torné

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dulce M. Santos

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge