Pedro Gascón
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro Gascón.
Journal of Clinical Oncology | 2002
Begoña Mellado; Maria del Carmen Vela; Dolors Colomer; Lorena Gutierrez; Teresa Castel; Llorenç Quintó; Montserrat Fontanillas; Noemi Reguart; José M. Domingo-Domènech; Clara Montagut; Jordi Estapé; Pedro Gascón
PURPOSE To evaluate the clinical significance of the detection of circulating melanoma cells in patients treated with adjuvant interferon and to determine their potential value as a marker of interferon response. PATIENTS AND METHODS We prospectively analyzed 616 peripheral-blood samples from 120 melanoma patients with stage IIA (n = 33), IIB (n = 22), III (n = 50), or IV (surgically resected) (n = 15) disease receiving adjuvant interferon alfa-2b therapy. Tyrosinase mRNA was assayed by reverse transcriptase polymerase chain reaction (RT-PCR) as a marker of circulating melanoma cells before the start of interferon and every 2 to 3 months thereafter. RESULTS With a median follow-up time of 32.3 months (range, 7.1 to 77.5 months), 47 patients (39.8%) relapsed and 31 (26%) died. During adjuvant interferon treatment, 76 patients (64%) had undetected circulating melanoma cells and 44 patients (36%) had a positive RT-PCR result in at least one sample. Actuarial 5-year disease-free survival was 62% in patients with persistently negative RT-PCR during interferon treatment and 38% for patients with positive RT-PCR during interferon (P =.02). Actuarial 5-year overall survival was 75% and 50%, respectively (P =.03). CONCLUSION Patients with melanoma and tyrosinase mRNA detected in the blood during adjuvant interferon therapy had a worse prognosis compared with patients with undetected tyrosinase mRNA during treatment. Further investigation into the detection of circulating melanoma cells as a surrogate marker of response to adjuvant interferon therapy is warranted.
Molecular Cancer Therapeutics | 2012
Mercedes Marín-Aguilera; Jordi Codony-Servat; Susana G. Kalko; Pedro L. Fernández; Raquel Bermudo; Elvira Buxo; M.J. Ribal; Pedro Gascón; Begoña Mellado
Docetaxel-based chemotherapy is the standard first-line therapy in metastatic castration-resistant prostate cancer (CRPC). However, most patients eventually develop resistance to this treatment. In this study, we aimed to identify key molecular genes and networks associated with docetaxel resistance in two models of docetaxel-resistant CRPC cell lines and to test for the most differentially expressed genes in tumor samples from patients with CRPC. DU-145 and PC-3 cells were converted to docetaxel-resistant cells, DU-145R and PC-3R, respectively. Whole-genome arrays were used to compare global gene expression between these four cell lines. Results showed differential expression of 243 genes (P < 0.05, Bonferroni-adjusted P values and log ratio > 1.2) that were common to DU-145R and PC-3R cells. These genes were involved in cell processes like growth, development, death, proliferation, movement, and gene expression. Genes and networks commonly deregulated in both DU-145R and PC-3R cells were studied by Ingenuity Pathways Analysis. Exposing parental cells to TGFB1 increased their survival in the presence of docetaxel, suggesting a role of the TGF-β superfamily in conferring drug resistance. Changes in expression of 18 selected genes were validated by real-time quantitative reverse transcriptase PCR in all four cell lines and tested in a set of 11 FFPE and five optimal cutting temperature tumor samples. Analysis in patients showed a noteworthy downexpression of CDH1 and IFIH1, among others, in docetaxel-resistant tumors. This exploratory analysis provides information about potential gene and network involvement in docetaxel resistance in CRPC. Further clinical validation of these results is needed to develop targeted therapies in patients with CRPC that can circumvent such resistance to treatment. Mol Cancer Ther; 11(2); 329–39. ©2011 AACR.
Journal of Cellular Physiology | 2012
Cristina Mayordomo; Susana García-Recio; Elisabet Ametller; Patricia Fernández-Nogueira; Eva María Pastor-Arroyo; Laia Vinyals; Ignasi Casas; Pedro Gascón; Vanessa Almendro
NK1 is a tachykinin receptor highly relevant to tumorigenesis and metastasis development in breast cancer and other carcinomas. Despite the substantial efforts done to develop potent NK1 receptor antagonists, none of these antagonists had shown good antitumor activity in clinical trials. Now, we have tested the effect of inhibition of the neuropeptide Substance P (SP), a NK1 ligand, as a potential therapeutic approach in cancer. We found that the inhibition of SP with antibodies strongly inhibit cell growth and induce apoptosis in breast, colon, and prostate cancer cell lines. These effects were accompained by a decrease in the mitogen‐activated kinase singaling pathway. Interestingly, in some cell lines SP abrogation decreased the steady state of Her2 and EGFR, suggesting that SP‐mediated signaling is important for the basal activity of these ErbB receptors. In consequence, we observed a blockade of the cell cycle progression and the inhibition of several cell cycle‐related proteins including mTOR. SP inhibition also induced cell death in cell lines resistant to Lapatinib and Trastuzumab that have increased levels of active Her2, suggesting that this therapeutic approach could be also effective for those cancers resistant to current anti‐ErbB therapies. Thus, we propose a new therapeutic strategy for those cancers that express NK1 receptor and/or other tachykinin receptors, based in the immuno‐blockade of the neuropeptide SP. J. Cell. Physiol. 227: 1358–1366, 2012.
Current Drug Targets | 2010
Vanessa Almendro; Susana García-Recio; Pedro Gascón
G protein-coupled receptors (GPCRs) comprise a large family of membrane receptors involved in signal transduction. These receptors are linked to a variety of physiological and biological processes such as regulation of neurotransmission, growth, cell differentiation and oncogenesis among others. Some of the effects of GPCRs are known to be mediated by the activation of MAPK pathways. Several GPCRs are also able to transactivate receptors with tyrosine kinase activity (TKR) such as EGFR and HER2 and thus to control DNA synthesis and cell proliferation. The interaction between these receptors not only plays an important physiological role but its disregulation can induce pathological states such as cancer. For this reason, the crosstalk between these two types of receptors can be considered a possible mechanism for cell transformation, tumor progression, reactivation of the metastatic disease, and the acquisition of resistance to therapies targeting TKR receptors. The transactivation of some TKRs by GPCRs is related to the lost of response of TKRs to inhibitors of TK activity, mainly by the activation of the c-Src protein which can directly phosphorylate and activate the cytoplasmic domain of a TKR. For these reason, the dual inhibition of GPCRs and TKRs in some types of cancer has been proposed as a better strategy to kill tumor cells. Increased understanding of the mechanisms that interconnect the two pathways regulated by GPCRs and TKRs may facilitate the design of new therapeutic strategies.
PLOS ONE | 2009
Vanessa Almendro; Elisabet Ametller; Susana García-Recio; Olga Collazo; Ignasi Casas; Josep Maria Augé; Joan Maurel; Pedro Gascón
Background The efficacy of oxaliplatin in cancer chemotherapy is limited by the development of drug resistance. MMP7 has been related to the loss of tumor cell response to cytotoxic agents although the exact mechanism is not fully understood. Moreover, MMP7 is an independent prognosis factor for survival in patients with colorectal cancer. The aim of the present study was to analyze the role of MMP7 and its cross-talk with the Fas/FasL system during the acquisition of oxaliplatin resistance in colon cancer cells. Principal Findings For this purpose we have developed three different oxaliplatin-resistant cell lines (RHT29, RHCT116 p53+/+, RHCT116 p53−/−) from the parental HT29, HCT116 p53+/+ and HCT116 p53−/− colon cancer cells. MMP7 basal expression was higher in the resistant compared to the parental cell lines. MMP7 was also upregulated by oxaliplatin in both HT29 (p53 mutant) and RHCT116 p53−/− but not in the RHCT116 p53+/+. Inhibition of MMP by 1,10-phenantroline monohydrate or siRNA of MMP7 restores cell sensitivity to oxaliplatin-induced apoptosis in both HT29 and RHCT116 p53−/− but not in the RHCT116 p53+/+. Some of these effects are caused by alterations in Fas receptor. Fas is upregulated by oxaliplatin in colon cancer cells, however the RHT29 cells treated with oxaliplatin showed a 3.8-fold lower Fas expression at the cell surface than the HT29 cells. Decrease of Fas at the plasma membrane seems to be caused by MMP7 since its inhibition restores Fas levels. Moreover, functional analysis of Fas demonstrates that this receptor was less potent in inducing apoptosis in RHT29 cells and that its activation induces MAPK signaling in resistant cells. Conclusions Taking together, these results suggest that MMP7 is related to the acquisition of oxaliplatin-resistance and that its inhibition restores drug sensitivity by increasing Fas receptor. Furthermore, Fas undergoes a change in its functionality in oxaliplatin-resistant cells inducing survival pathways instead of apoptotic signals.
Cancer Research | 2013
Susana García-Recio; Gemma Fuster; Patricia Fernández-Nogueira; Eva María Pastor-Arroyo; So Yeon Park; Cristina Mayordomo; Elisabet Ametller; Mario Mancino; Xavier Gonzalez-Farre; Hege G. Russnes; Pablo Engel; Domiziana Costamagna; Pedro L. Fernández; Pedro Gascón; Vanessa Almendro
ERBB receptor transmodulation by heterologous G-protein-coupled receptors (GPCR) generates functional diversity in signal transduction. Tachykinins are neuropeptides and proinflammatory cytokines that promote cell survival and cancer progression by activating several GPCRs. In this work, we found that the pain-associated tachykinin Substance P (SP) contributes to persistent transmodulation of the ERBB receptors, EGFR and HER2, in breast cancer, acting to enhance malignancy and therapeutic resistance. SP and its high-affinity receptor NK-1R were highly expressed in HER2(+) primary breast tumors (relative to the luminal and triple-negative subtypes) and were overall correlated with poor prognosis factors. In breast cancer cell lines and primary cultures derived from breast cancer samples, we found that SP could activate HER2. Conversely, RNA interference-mediated attenuation of NK-1R, or its chemical inhibition, or suppression of overall GPCR-mediated signaling, all strongly decreased steady-state expression of EGFR and HER2, establishing that their basal activity relied upon transdirectional activation by GPCR. Thus, SP exposure affected cellular responses to anti-ERBB therapies. Our work reveals an important oncogenic cooperation between NK-1R and HER2, thereby adding a novel link between inflammation and cancer progression that may be targetable by SP antagonists that have been clinically explored.
BioMed Research International | 2015
Susana García-Recio; Pedro Gascón
The neurokinin 1 receptor (NK-1R) is the main receptor for the tachykinin family of peptides. Substance P (SP) is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema). This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV). The first of these antagonists, aprepitant (oral administration) and fosaprepitant (intravenous administration), are prescribed for high and moderate emesis.
Cancer Research | 2015
Min-Zu Wu; Su-Feng Chen; Shin Nieh; Christopher Benner; Luo-Ping Ger; Chia-Ing Jan; Li Ma; Chien-Hung Chen; Tomoaki Hishida; Hong-Tai Chang; Yaoh-Shiang Lin; Nuria Montserrat; Pedro Gascón; Ignacio Sancho-Martinez; Juan Carlos Izpisua Belmonte
Hypoxia is a hallmark of solid tumors that drives malignant progression by altering epigenetic controls. In breast tumors, aberrant DNA methylation is a prevalent epigenetic feature associated with increased risk of metastasis and poor prognosis. However, the mechanism by which hypoxia alters DNA methylation or other epigenetic controls that promote breast malignancy remains poorly understood. We discovered that hypoxia deregulates TET1 and TET3, the enzymes that catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), thereby leading to breast tumor-initiating cell (BTIC) properties. TET1/3 and 5hmC levels were closely associated with tumor hypoxia, tumor malignancy, and poor prognosis in breast cancer patients. Mechanistic investigations showed that hypoxia leads to genome-wide changes in DNA hydroxymethylation associated with upregulation of TNFα expression and activation of its downstream p38-MAPK effector pathway. Coordinate functions of TET1 and TET3 were also required to activate TNFα-p38-MAPK signaling as a response to hypoxia. Our results reveal how signal transduction through the TET-TNFα-p38-MAPK signaling axis is required for the acquisition of BTIC characteristics and tumorigenicity in vitro and in vivo, with potential implications for how to eradicate BTIC as a therapeutic strategy.
Molecular Cancer | 2010
Elisabet Ametller; Susana García-Recio; Domizziana Costamagna; Cristina Mayordomo; Patricia Fernández-Nogueira; Neus Carbó; Eva María Pastor-Arroyo; Pedro Gascón; Vanessa Almendro
BackgroundCD95 is a death receptor controlling not only apoptotic pathways but also activating mechanisms promoting tumor growth. During the acquisition of chemoresistance to oxaliplatin there is a progressive loss of CD95 expression in colon cancer cells and a decreased ability of this receptor to induce cell death. The aim of this study was to characterize some key cellular responses controlled by CD95 signaling in oxaliplatin-resistant colon cancer cells.ResultsWe show that CD95 triggering results in an increased metastatic ability in resistant cells. Moreover, oxaliplatin treatment itself stimulates cell migration and decreases cell adhesion through CD95 activation, since CD95 expression inhibition by siRNA blocks the promigratory effects of oxaliplatin. These promigratory effects are related to the epithelia-to-mesenchymal transition (EMT) phenomenon, as evidenced by the up-regulation of some transcription factors and mesenchymal markers both in vitro and in vivo.ConclusionsWe conclude that oxaliplatin treatment in cells that have acquired resistance to oxaliplatin-induced apoptosis results in tumor-promoting effects through the activation of CD95 signaling and by inducing EMT, all these events jointly contributing to a metastatic phenotype.
Frontiers in Cell and Developmental Biology | 2015
Arantzazu Zubeldia-Plazaola; Elisabet Ametller; Mario Mancino; Miquel Prats de Puig; Anna López-Plana; Flavia Guzman; Laia Vinyals; Eva M. Pastor-Arroyo; Vanessa Almendro; Gemma Fuster; Pedro Gascón
Two lineages, epithelial, and myoepithelial cells are the main cell populations in the normal mammary gland and in breast cancer. Traditionally, cancer research has been performed using commercial cell lines, but primary cell cultures obtained from fresh breast tissue are a powerful tool to study more reliably new aspects of mammary gland biology, including normal and pathological conditions. Nevertheless, the methods described to date have some technical problems in terms of cell viability and yield, which hamper work with primary mammary cells. Therefore, there is a need to optimize technology for the proper isolation of epithelial and myoepithelial cells. For this reason, we compared four methods in an effort to improve the isolation and primary cell culture of different cell populations of human mammary epithelium. The samples were obtained from healthy tissue of patients who had undergone mammoplasty or mastectomy surgery. We based our approaches on previously described methods, and incorporated additional steps to ameliorate technical efficiency and increase cell survival. We determined cell growth and viability by phase-contrast images, growth curve analysis and cell yield, and identified cell-lineage specific markers by flow cytometry and immunofluorescence in 3D cell cultures. These techniques allowed us to better evaluate the functional capabilities of these two main mammary lineages, using CD227/K19 (epithelial cells) and CD10/K14 (myoepithelial cells) antigens. Our results show that slow digestion at low enzymatic concentration combined with the differential centrifugation technique is the method that best fits the main goal of the present study: protocol efficiency and cell survival yield. In summary, we propose some guidelines to establish primary mammary epithelial cell lines more efficiently and to provide us with a strong research instrument to better understand the role of different epithelial cell types in the origin of breast cancer.