Pedro H. Gobira
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro H. Gobira.
Cell and Tissue Research | 2013
Fabrício A. Moreira; Pedro H. Gobira; Thércia Guedes Viana; Maria Adrielle Vicente; Hélio Zangrossi; Frederico G. Graeff
Panic disorder (PD) is a subtype of anxiety disorder in which the core phenomenon is the spontaneous occurrence of panic attacks. Although studies with laboratory animals have been instrumental for the understanding of its neurobiology and treatment, few review articles have focused on the validity of the currently used animal models for studying this psychopathology. Therefore, the aim of the present paper is to discuss the strengths and limits of these models in terms of face, construct and predictive validity. Based on the hypothesis that panic attacks are related to defensive responses elicited by proximal threat, most animal models measure the escape responses induced by specific stimuli. Some apply electrical or chemical stimulation to brain regions proposed to modulate fear and panic responses, such as the dorsal periaqueductal grey or the medial hypothalamus. Other models focus on the behavioural consequences caused by the exposure of rodents to ultrasound or natural predators. Finally, the elevated T-maze associates a one-way escape response from an open arm with panic attacks. Despite some limitations, animal models are essential for a better understanding of the neurobiology and pharmacology of PD and for discovering more effective treatments.
Behavioural Pharmacology | 2014
Luara A. Batista; Pedro H. Gobira; Thércia Guedes Viana; Daniele C. Aguiar; Fabrício A. Moreira
The endocannabinoid system comprises the CB1 and CB2 receptors (the targets of the Cannabis sativa compound delta-9-tetrahydrocannabinol), the endogenous ligands (endocannabinoids) arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, their synthesizing machinery and membrane transport system, and the hydrolyzing enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. The endocannabinoids may act on demand to confer protection against aversive stimuli, which suggests that increasing their brain levels may represent an approach for treatment of anxiety-related disorders. Thus, this article reviews the profile of endocannabinoid reuptake and hydrolysis inhibitors in experimental tests predictive of anxiolytic activity. The FAAH inhibitors and the blockers of anandamide transport, in contrast to direct CB1 receptor agonists, induce anxiolytic effects at doses that do not interfere with motor activity. MAGL inhibitors also reduce anxiety-like behavior, although they are more likely to impair motor activity. Regarding their mechanisms, increasing anandamide levels induce responses mediated by the CB1 receptor and occluded by the transient receptor potential vanilloid type-1 channels, whereas the effects of increasing 2-arachidonoyl glycerol depend on both CB1 and CB2 receptors. Their neuroanatomical targets include various structures related to anxiety and fear responses. Understanding the pharmacological properties of FAAH and MAGL inhibitors may contribute toward the development of new anxiolytic interventions based on the endocannabinoid system.
Behavioural Brain Research | 2013
Ana F. Almeida-Santos; Pedro H. Gobira; L.C. Rosa; Francisco S. Guimarães; Fabrício A. Moreira; Daniele C. Aguiar
Anandamide and 2-arachidonoylglycerol (2-AG) are the two main endocannabinoids, exerting their effects by activating type 1 (CB1r) and type 2 (CB2r) cannabinoid receptors. Anandamide inhibits anxiety-like responses through the activation of CB1r in certain brain regions, including the dorsolateral periaqueductal gray (dlPAG). 2-AG also attenuates anxiety-like responses, although the neuroanatomical sites for these effects remained unclear. Here, we tested the hypothesis that enhancing 2-AG signaling in the dlPAG would induce anxiolytic-like effects. The mechanisms involved were also investigated. Male Wistar rats received intra-dlPAG injections of 2-AG, URB602 (inhibitor of the 2-AG hydrolyzing enzyme, mono-acylglycerol lipase--MGL), AM251 (CB1r antagonist) and AM630 (CB2r antagonist). The behavior was analyzed in the elevated plus maze after the following treatments. Exp. 1: vehicle (veh) or 2-AG (5 pmol, 50 pmol, and 500 pmol). Exp. 2: veh or URB602 (30 pmol, 100 pmol or 300 pmol). Exp. 3: veh or AM251 (100 pmol) followed by veh or 2-AG (50 pmol). Exp. 4: veh or AM630 (1000 pmol) followed by veh or 2-AG. Exp. 5: veh or AM251 followed by veh or URB602 (100 pmol). Exp. 6: veh or AM630 followed by veh or URB602. 2-AG (50 pmol) and URB602 (100 pmol) significantly increased the exploration of the open arms of the apparatus, indicating an anxiolytic-like effect. These behavioral responses were prevented by CB1r (AM251) or CB2r (AM630) antagonists. Our results showed that the augmentation of 2-AG levels in the dlPAG induces anxiolytic-like effects. The mechanism seems to involve both CB1r and CB2r receptors.
Pharmacology, Biochemistry and Behavior | 2013
Pedro H. Gobira; Daniele C. Aguiar; Fabrício A. Moreira
An extensive literature has implicated the endocannabinoid system in the modulation anxiety-related responses. Nonetheless, it remains uncertain what would be the effects of endocannabinoid-related compounds against responses related to specific subtypes of anxiety disorders, particularly generalized anxiety and panic. In this context, the elevated T maze (ETM) has been developed to evaluate two distinct tasks in the same rat, inhibitory avoidance and escape response from an open arm, predictive of anxiolytic and panicolytic effects, respectively. Thus, the present study tested the hypothesis that drugs that facilitate endocannabinoid-signaling would inhibit both types of aversive responses in this model. As positive controls, diazepam attenuated only inhibitory avoidance (anxiolytic-like effect), whereas alprazolam was effective against both avoidance and escape (anxiolytic- and panicolytic like effects). The synthetic cannabinoid WIN55,212-2 (1.0 mg/kg) promoted an anxiolytic-like effect, which was prevented by pre-treatment with the CB1 receptor antagonist, AM 251 (1.0 mg/kg). At the higher dose (3.0 mg/kg), this antagonist promoted an anxiogenic-like effect. None of these drugs interfered with the escape task. The endocannabinoid (anandamide) hydrolysis inhibitor, URB 597 at doses of 0.3 and 1.0 mg/kg, induced, respectively, panicolytic- and anxiolytic-like effects, which were reversed by pretreatment with AM 251. These results suggest that drugs that act on the endocannabinoid system have different effects on the behaviors assessed in the ETM.
Revista Brasileira de Psiquiatria | 2013
Pedro H. Gobira; Jivago Ropke; Daniele C. Aguiar; José Alexandre S. Crippa; Fabrício A. Moreira
The use of antipsychotic drugs represents an important approach for the treatment of schizophrenia. However, their efficacy is limited to certain symptoms of this disorder, and they induce serious side effects. As a result, there is a strong demand for the development of new drugs, which depends on reliable animal models for pharmacological characterization. The present review discusses the face, construct, and predictive validity of classical animal models for studying the efficacy and side effects of compounds for the treatment of schizophrenia. These models are based on the properties of antipsychotics to impair the conditioned avoidance response and reverse certain behavioral changes induced by psychotomimetic drugs, such as stereotypies, hyperlocomotion, and deficit in prepulse inhibition of the startle response. Other tests, which are not specific to schizophrenia, may predict drug effects on negative and cognitive symptoms, such as deficits in social interaction and memory impairment. Regarding motor side effects, the catalepsy test predicts the liability of a drug to induce Parkinson-like syndrome, whereas vacuous chewing movements predict the liability to induce dyskinesia after chronic treatment. Despite certain limitations, these models may contribute to the development of more safe and efficacious antipsychotic drugs.
Neurotoxicology | 2015
Pedro H. Gobira; Luciano R. Vilela; Bruno D.C. Gonçalves; Rebeca Priscila de Melo Santos; Antônio C. de Oliveira; Luciene B. Vieira; Daniele C. Aguiar; José Alexandre S. Crippa; Fabrício A. Moreira
Cannabidiol (CBD), a major non-psychotomimetic constituent of Cannabis sativa, has therapeutic potential for certain psychiatric and neurological disorders. Studies in laboratory animals and limited human trials indicate that CBD has anticonvulsant and neuroprotective properties. Its effects against cocaine neurotoxicity, however, have remained unclear. Thus, the present study tested the hypothesis that CBD protects against cocaine-induced seizures and investigated the underlying mechanisms. CBD (30 mg/kg) pre-treatment increased the latency and reduced the duration of cocaine (75 mg/kg)-induced seizures in mice. The CB1 receptor antagonist, AM251 (1 and 3mg/kg), and the CB2 receptor antagonist, AM630 (2 and 4 mg/kg), failed to reverse this protective effect, suggesting that alternative mechanisms are involved. Synaptosome studies with the hippocampus of drug-treated animals revealed that cocaine increases glutamate release, whereas CBD induces the opposite effect. Finally, the protective effect of this cannabinoid against cocaine-induced seizure was reversed by rapamycin (1 and 5mg/kg), an inhibitor of the mammalian target of rapamycin (mTOR) intracellular pathway. In conclusion, CBD protects against seizures in a model of cocaine intoxication. These effects possibly occur through activation of mTOR with subsequent reduction in glutamate release. CBD should be further investigated as a strategy for alleviating psychostimulant toxicity.
European Journal of Pharmacology | 2014
Ana F. Almeida-Santos; Pedro H. Gobira; Diego P. Souza; Renata Cristina Mendes Ferreira; Thiago Roberto Lima Romero; Igor Dimitri Gama Duarte; Daniele C. Aguiar; Fabrício A. Moreira
Aripiprazole is an antipsychotic that acts as a partial agonist at dopamine D2 receptors, with a favorable pharmacological profile. Due to its unique mechanism of action, this compound has potential application as a substitutive therapy for drug addiction. Considering that distinct neural systems subserve the addictive and analgesic actions of opioids, we tested the hypothesis that aripiprazole selectively inhibit the abuse-related, but not the antinociceptive, effects of morphine. The drugs were tested in male Swiss mice for their effects on locomotion, conditioned place preference (CPP) and nociception. Morphine (20mg/kg) increased motor activity, whereas aripiprazole (0.1, 1 and 10mg/kg) did not induce any change. This antipsychotic, however, prevented morphine-induced locomotion. In the conditioning box, aripiprazole did not induce either reward or aversion. Yet, it prevented both the acquisition and the expression of morphine-induced CPP. Finally, none of the doses of this antipsychotic interfere with morphine (5mg/kg)-induced antinociception in the tail-flick test. In conclusion, aripiprazole inhibited the abuse-related effects of morphine at doses that do not interfere with basal locomotion, reward or aversion. Also, it did not alter morphine-induced antinociceptive effects. This antipsychotic should be further investigated as a possible substitutive strategy for treating certain aspects of opioid addiction.
Toxicology and Applied Pharmacology | 2015
Luciano R. Vilela; Pedro H. Gobira; Thércia Guedes Viana; Daniel de Castro Medeiros; Talita H. Ferreira-Vieira; Juliana G. Doria; Rodrigues Fg; Daniele C. Aguiar; Grace Schenatto Pereira; André R. Massessini; Antonio Carlos Pinheiro de Oliveira; Márcio Flávio Dutra Moraes; Fabrício A. Moreira
Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity.
Acta Neuropsychiatrica | 2014
Lívia Carla de Melo Rodrigues; Pedro H. Gobira; Antônio C. de Oliveira; Renan Pelição; Antônio Lúcio Teixeira; Fabrício A. Moreira; Alline C. Campos
Objective Substance dependence disorder is a chronically relapsing condition characterised by neurobiological changes leading to loss of control in restricting a substance intake, compulsion and withdrawal syndrome. In the past few years, (endo)cannabinoids have been raised as a possible target in the aetiology of drug addiction. On the other hand, although the exact mechanisms of the genesis of addiction remain poorly understood, it is possible that neuroinflammation might also play a role in the pathophysiology of this condition. Studies demonstrated that (endo)cannabinoids act as immunomodulators by inhibiting cytokines production and microglial cell activation. Thus, in the present review, we explore the possible role of neuroinflammation on the therapeutic effects of cannabinoids on drug addiction. Methods We conducted an evidence-based review of the literature in order to assess the role of cannabinoids on the neuroinflammatory hypothesis of addiction (terms: addiction, cannabinoids and inflammation). We searched PubMed and BioMedCentral databases up to April 2014 with no date restrictions. Results In all, 165 eligible articles were included in the present review. Existing evidence suggests that disruption in cannabinoid signalling during the drug addiction process leads to microglial activation and neuroinflammation. Conclusion The literature showed that inflammation and changes in endocannabinod signalling occur in drug abuse; however, it remains uncertain whether these changes are causally or coincidentally associated with addiction. Additional studies, therefore, are needed to elucidate the contribution of neuroinflammation on the behavioural and neuroprotective effects of cannabinoids on drug addiction.
European Neuropsychopharmacology | 2016
Pedro H. Gobira; Ana F. Almeida-Santos; Francisco S. Guimarães; Fabrício A. Moreira; Daniele C. Aguiar
2-arachidonoylglycerol (2-AG) is an endogenous ligand of the cannabinoid CB1 receptor. This endocannabinoid and its hydrolyzing enzyme, monoacylglycerol lipase (MAGL), are present in encephalic regions related to psychiatric disorders, including the midbrain dorsolateral periaqueductal grey (dlPAG). The dlPAG is implicated in panic disorder and its stimulation results in defensive responses proposed as a model of panic attacks. The present work verified if facilitation of 2-AG signalling in the dlPAG counteracts panic-like responses induced by local chemical stimulation. Intra-dlPAG injection of 2-AG prevented panic-like response induced by the excitatory amino acid N-methyl-d-aspartate (NMDA). This effect was mimicked by the 2-AG hydrolysis inhibitor (MAGL preferring inhibitor) URB602. The anti-aversive effect of URB602 was reversed by the CB1 receptor antagonist, AM251. Additionally, a combination of sub-effective doses of 2-AG and URB602 also prevented NMDA-induced panic-like response. Finally, immunofluorescence assay showed a significant increase in c-Fos positive cells in the dlPAG after local administration of NMDA. This response was also prevented by URB602. These data support the hypothesis that 2-AG participates in anti-aversive mechanisms in the dlPAG and reinforce the proposal that facilitation of endocannabinoid signalling could be a putative target for developing additional treatments against panic and other anxiety-related disorders.
Collaboration
Dive into the Pedro H. Gobira's collaboration.
Antonio Carlos Pinheiro de Oliveira
Universidade Federal de Minas Gerais
View shared research outputs