Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro Henrique de Oliveira Neto is active.

Publication


Featured researches published by Pedro Henrique de Oliveira Neto.


Journal of Chemical Physics | 2011

Exciton dissociation and charge carrier recombination processes in organic semiconductors.

Luiz Antonio Ribeiro; Pedro Henrique de Oliveira Neto; Wiliam Ferreira da Cunha; Luiz F. Roncaratti; Ricardo Gargano; Demetrio A. da Silva Filho; Geraldo Magela e Silva

Exciton dissociation and charge recombination processes in organic semiconductors, with thermal effects taken into account, are described in this paper. Here, we analyzed the mechanisms of polaron-excitons dissociation into free charge carriers and the consequent recombination of those carriers under thermal effects on two parallel π-conjugated polymers chains electronically coupled. Our results suggest that exciton dissociation in a single molecule give rise to localized, polaron-like charge carrier. Besides, we concluded that in the case of interchain processes, the bimolecular polaron recombination does not lead to an usual exciton state. Rather, this type of recombination leads to an oscillating dipole between the two chains. The recombination time obtained here for these processes are in agreement with the experimental results. Finally, our results show that temperature effects are essential to the relaxation process leading to polaron formation in a single chain, as in the absence of temperature, this process was not observed. In the case of two chains, we conclude that temperature effects also help the bimolecular recombination process, as observed experimentally.


Journal of Physical Chemistry A | 2016

Improving the Description of the Optical Properties of Carotenoids by Tuning the Long-Range Corrected Functionals

Igo T. Lima; Andriele da Silva Prado; João B. L. Martins; Pedro Henrique de Oliveira Neto; Artemis M. Ceschin; Wiliam Ferreira da Cunha; Demetrio A. da Silva Filho

In this work we use gap-fitting procedure to tune the long-range corrected functionals and accurately investigate the electronic and optical properties of the five main molecules composing Buriti oil (extracted from Mauritia flexuosa L.) in the framework of density functional theory (DFT) and time-dependent (TD) DFT. The characteristic length (1/ω) was observed to be entirely system dependent, though we concluded that its determination is of fundamental importance to rescue geometrical, electronic, and optical properties with accuracy. We demonstrate that our approach of tuning characteristic length for each system resulted in an absorbance spectra in better experimental agreement when compared to the traditional methodology. Therefore, this study indicates that the tuning of the range-separation parameter is crucial to improve the description of the optical properties of conjugated molecules when TDDFT is used. For example, the wavelength of maximum absorption, λmax, for the phytofluene, obtained using B3LYP, is 381 nm, while using the gap-fitting procedure for the tuned-LC-BLYP the estimated λmax changed to 358 nm. The latter estimate is in better agreement with the experimental value of 350 nm.


Journal of Chemical Physics | 2013

Impurity effects on polaron-exciton formation in conjugated polymers

Luiz Antonio Ribeiro; Wiliam Ferreira da Cunha; Pedro Henrique de Oliveira Neto; Ricardo Gargano; Geraldo Magela e Silva

Combining the one-dimensional tight-binding Su-Schrieffer-Heeger model and the extended Hubbard model, the collision of two oppositely charged polarons is investigated under the influence of impurity effects using a non-adiabatic evolution method. Results show that electron-electron interactions have direct influence on the charge distribution coupled to the polaron-exciton lattice defect. Additionally, the presence of an impurity in the collisional process reduces the critical electric field for the polaron-exciton formation. In the small electric field regime, the impurity effects open three channels and are of fundamental importance to favor the polaron-exciton creation. The results indicate that the scattering between polarons in the presence of impurities can throw a new light on the description of electroluminescence in conjugated polymer systems.


Journal of Physical Chemistry B | 2013

Dynamical study of impurity effects on bipolaron-bipolaron and bipolaron-polaron scattering in conjugated polymers.

Luiz Antonio Ribeiro; Wiliam Ferreira da Cunha; Pedro Henrique de Oliveira Neto; Ricardo Gargano; Geraldo Magela e Silva

Combining the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model and the extended Hubbard model (EHM), the scattering of two oppositely charged bipolarons and a bipolaron-polaron pair is investigated under the influence of impurity effects using a nonadiabatic evolution method. These novel results for bipolarons show that the oppositely charged quasi-particles scatter into a mixed state composed of bipolarons and excitons. The excitation yield depends sensitively on the strength of the applied electric field. In the presence of an impurity, the critical electric field regime for formation of a state composed by bipolarons and excitons is increased. Additionally, we were able to obtain critical values of electric fields that played the role of drastically modifying the system dynamics. These facts suggest that the scattering between bipolarons and a bipolaron-polaron pair in the presence of impurities is crucial for the understanding of electroluminescence in optoelectronics devices, such as polymer light emitting diodes.


Journal of Physical Chemistry A | 2009

Molecular dynamics investigation of charge carrier density influence over mobility in conjugated polymers.

Pedro Henrique de Oliveira Neto; Wiliam Ferreira da Cunha; Ricardo Gargano; Geraldo Magela e Silva

Charge carrier mobility is known to be one of the most important efficiency delimiting factors in conducting polymer-based electronic devices. As the transport mechanism in this class of material is nonconventional, many works have tried to elucidate the charge carriers interaction with temperature, external electric field, and the collective effects they present. Even though the multiple trap-and-release model is often used to describe these effects, its applicability is known to be restricted to electronic properties. In this work we make use of a modified version of the Su-Schrieffer-Heeger model, the most used method to describe the important properties of conducting polymer in general, to investigate the influence of temperature and carrier densities over the transport mechanisms. We obtained different regimes of temperature and carriers density influence over the systems mobility, consistent with most of the experimental data available.


Journal of Physical Chemistry A | 2013

Vibrational and Electronic Structure Analysis of a Carbon Dioxide Interaction with Functionalized Single-Walled Carbon Nanotubes

Edson Nunes Costa Paura; Wiliam Ferreira da Cunha; Pedro Henrique de Oliveira Neto; Geraldo Magela e Silva; João B. L. Martins; Ricardo Gargano

Electronic and vibrational properties of different single-walled carbon nanotubes (SWNTs) interacting with a CO2 molecule are investigated through the use of density functional theory (DFT) calculations and the discrete variable representation (DVR) method, respectively. We observed a considerable geometry difference between pristine and doped nanotubes. Consequently, a greater binding energy between the former type of nanotubes and the adsorbing molecule is achieved, a fact that finds experimental support and leads us to consider cobalt-doped nanotubes as promising candidates for chemical sensors. From the vibrational point of view, we note that the zigzag chirality tends to present higher values of vibrational frequencies for most of the states considered regardless of the nanotubes being doped or not. The potential energy curves (PECs) for the interactions between CO2 and all of the considered nanotubes together with spectroscopic constants are provided, and the reliability of the performed calculations makes the data a useful source of comparison for future works.


Journal of Physical Chemistry A | 2016

Polaron Properties in Armchair Graphene Nanoribbons

Wiliam Ferreira da Cunha; Paulo H. Acioli; Pedro Henrique de Oliveira Neto; Ricardo Gargano; Geraldo Magela e Silva

By means of a 2-D tight-binding model with lattice relaxation in a first-order expansion, we report different polaron properties depending on the armchair graphene nanoribbons width family as well as on its size. We find that representatives of the 3p+2 family do not present a polaronic-mediated charge transport. As for 3p and 3p+1 families, the polaron behavior was completely dependent on the systems width. In particular, we observed a greater degree of delocalization for broader nanoribbons; narrower nanoribbons of both families, on the contrary, typically presented a more localized polaronic-type transport. Energy levels and occupation numbers analysis are performed to rigorously assess the nature of the charge carrier. Time evolution in the scope of the Ehrenfest molecular dynamics was also carried out to confirm the collective behavior and stability of the carrier as a function of time. We were able to determine that polarons in nanoribbons of 3p family present higher mobility than those in 3p+1 nanoribbons. These results identify the transport process that takes place for each system, and they allow the prediction of the mobility of the charge carriers as a function of the structural properties of the system, thus providing guidance on how to improve the efficiency of graphene nanoribbon-based devices.


Applied Physics Letters | 2018

Biexciton cascade emission in multilayered organic nanofibers

Leonardo Evaristo de Sousa; Wiliam Ferreira da Cunha; Demétrio Antônio da Silva Filho; Pedro Henrique de Oliveira Neto

The optical performance of multilayered organic nanofibers results from the dynamics of excited states in the system. Here, we show that the presence of biexcitons is crucial to correctly describe such dynamics. This may be the case even if the intensity of the light source is not high. The cascade emission mediated by biexcitons is mainly responsible for the behavior of the photoluminescence profile in the initial steps after light absorption. By using a combination of Kinetic Monte Carlo model and Genetic Algorithm, we simulate Time-Resolved Photoluminescence measurements of multilayered nanofibers. These simulations are compared with experimental results, thus revealing that the usual singlet exciton recombination is insufficient to reproduce the complete physical picture. Our results also include predictions for the behavior of the biexciton signal. These findings are observed to be valid for a wide temperature range, showing the importance of the biexciton cascade emission in several regimes for orga...


Journal of Chemical Physics | 2018

Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

Leonardo Evaristo de Sousa; Pedro Henrique de Oliveira Neto; Jakob Kjelstrup-Hansen; Demétrio Antônio da Silva Filho

Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.


Scientific Reports | 2018

Exciton Diffusion in Organic Nanofibers: A Monte Carlo Study on the Effects of Temperature and Dimensionality

Leonardo Evaristo de Sousa; Demetrio A. da Silva Filho; Rafael Timóteo de Sousa; Pedro Henrique de Oliveira Neto

Organic nanofibers have found various applications in optoelectronic devices. In such devices, exciton diffusion is a major aspect concerning their efficiency. In the case of singlet excitons, Förster transfer is the mechanism responsible for this process. Temperature and morphology are factors known to influence exciton diffusion but are not explicitly considered in the expressions for the Förster rate. In this work, we employ a Kinetic Monte Carlo (KMC) model to investigate singlet exciton diffusion in para-hexaphenyl (P6P) and α-sexithiophene (6T) nanofibers. Building from previous experimental and theoretical studies that managed to obtain temperature dependent values for Förster radii, exciton average lifetimes and intermolecular distances, our model is able to indicate how these parameters translate into diffusion coefficients and diffusion lengths. Our results indicate that these features strongly depend on the coordination number in the material. Furthermore, we show how all these features influence the emitted light color in systems composed of alternating layers of P6P and 6T. Finally, we present evidence that the distribution of exciton displacements may result in overestimation of diffusion lengths in experimental setups.

Collaboration


Dive into the Pedro Henrique de Oliveira Neto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge