Pedro Ivo da S. Maia
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro Ivo da S. Maia.
Journal of Inorganic Biochemistry | 2010
Pedro Ivo da S. Maia; André G. de A. Fernandes; Jean Jerley Nogueira da Silva; Adriano D. Andricopulo; Sebastião S. Lemos; Ernesto Schulz Lang; Ulrich Abram; Victor M. Deflon
New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh(3))] (M = Pd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H(2)L(1a) and H(2)L(1b), and benzoylacetone, H(2)L(2a) and H(2)L(2b). The new complexes [Pt(L(1a))(PPh(3))] (1), [Pd(L(1a))(PPh(3))] (2), [Pt(L(1b))(PPh(3))] (3), [Pd(L(1b))(PPh(3))] (4), [Pt(L(2a))(PPh(3))] (5), [Pd(L(2a))(PPh(3))] (6), [Pt(L(2b))(PPh(3))] (7) and [Pd(L(2b))(PPh(3))] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR ((1)H and (31)P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H(2)L(1a) and H(2)L(1b) ligands, H(2)L(2a) and H(2)L(2b) assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H(2)L(2a) and H(2)L(2b) suffer ring-opening reaction, coordinating in the same manner as H(2)L(1a) and H(2)L(1b), deprotonated and in O,N,S-tridentate mode to the (MPPh(3))(2+) moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC(50) values ranging from 7.8 to 18.7 μM, while the ligand H(2)L(2a) presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole.
Journal of the Brazilian Chemical Society | 2010
Pedro Ivo da S. Maia; Angelica E. Graminha; Fernando Rogério Pavan; Clarice Queico Fujimura Leite; Alzir A. Batista; Davi F. Back; Ernesto Schulz Lang; Javier Ellena; Sebastião S. Lemos; Heloisa S. Salistre-de-Araujo; Victor M. Deflon
Three PdII complexes were prepared from N(4)-substituted thiosemicarbazones: [Pd(aptsc)(PPh3)](NO3)•H2O, 1, [Pd(apmtsc)(PPh3)](NO3), 2, and [Pd(apptsc)(PPh3)](NO3)•H2O, 3, where PPh3 = triphenylphosphine; Haptsc = 2-acetylpyridine-thiosemicarbazone; Hapmtsc = 2-acetylpyridine-N(4)-methyl-thiosemicarbazone and Happtsc = 2-acetylpyridine-N(4)-phenyl-thiosemicarbazone. All complexes were characterized by elemental analysis, IR, UV-Vis, 1H and 31P{1H} NMR spectroscopies, and had their crystalline structures determined by X-ray diffractometry from single crystals. The monoanionic thiosemicarbazonate ligands act in a tridentate mode, binding to the metal through the pyridine nitrogen, the azomethine nitrogen and the sulfur atoms. The cytotoxic activity against the breast cancer cell line MDA-MB231 and the anti-Mycobacterium tuberculosis H37Rv ATCC 27294 activity were evaluated for the compounds. All PdII complexes were highly active against the studied cell line, presenting similar values of IC50, around 5 µmol L-1, while the clinically applied antitumor agent cisplatin was inactive. The compounds show remarkable anti-M. tuberculosis activities, presenting MIC values comparable or better than some commercial anti-M tuberculosis drugs.
Journal of Inorganic Biochemistry | 2014
Carolina G. Oliveira; Pedro Ivo da S. Maia; Paula C. Souza; Fernando Rogério Pavan; Clarice Queico Fujimura Leite; Rommel B. Viana; Alzir A. Batista; Otaciro R. Nascimento; Victor M. Deflon
Through a systematic variation on the structure of a series of manganese complexes derived from 2-acetylpyridine-N(4)-R-thiosemicarbazones (Hatc-R), structural features have been investigated with the aim of obtaining complexes with potent anti-Mycobacterium tuberculosis activity. The analytical methods used for characterization included FTIR, EPR, UV-visible, elemental analysis, cyclic voltammetry, magnetic susceptibility measurement and single crystal X-ray diffractometry. Density functional theory (DFT) calculations were performed in order to evaluate the contribution of the thiosemicarbazonate ligands on the charge distribution of the complexes by changing the peripheral groups as well as to verify the Mn-donor atoms bond dissociation predisposition. The results obtained are consistent with the monoanionic N,N,S-tridentate coordination of the thiosemicarbazone ligands, resulting in octahedral complexes of the type [Mn(atc-R)2], paramagnetic in the extension of 5 unpaired electrons, whose EPR spectra are consistent for manganese(II). The electrochemical analyses show two nearly reversible processes, which are influenced by the peripheral substituent groups at the N4 position of the atc-R(1-) ligands. The minimal inhibitory concentration (MIC) of these compounds against M. tuberculosis as well as their in vitro cytotoxicity on VERO and J774A.1 cells (IC50) was determined in order to find their selectivity index (SI) (SI=IC50/MIC). The results evidenced that the compounds described here can be considered as promising anti-M. tuberculosis agents, with SI values comparable or better than some commercial drugs available for the tuberculosis treatment.
PLOS Neglected Tropical Diseases | 2014
Zumira A. Carneiro; Pedro Ivo da S. Maia; Renata Sesti-Costa; Carla D. Lopes; Tatiana A. Pereira; Cristiane Maria Milanezi; Marcelo de Assumpção Pereira da Silva; Renata Fonseca Vianna Lopez; João Santana da Silva; Victor M. Deflon
The parasite Trypanosoma cruzi causes Chagas disease, which remains a serious public health concern and continues to victimize thousands of people, primarily in the poorest regions of Latin America. In the search for new therapeutic drugs against T. cruzi, here we have evaluated both the in vitro and the in vivo activity of 5-hydroxy-3-methyl-5-phenyl-pyrazoline-1-(S-benzyl dithiocarbazate) (H2bdtc) as a free compound or encapsulated into solid lipid nanoparticles (SLN); we compared the results with those achieved by using the currently employed drug, benznidazole. H2bdtc encapsulated into solid lipid nanoparticles (a) effectively reduced parasitemia in mice at concentrations 100 times lower than that normally employed for benznidazole (clinically applied at a concentration of 400 µmol kg−1 day−1); (b) diminished inflammation and lesions of the liver and heart; and (c) resulted in 100% survival of mice infected with T. cruzi. Therefore, H2bdtc is a potent trypanocidal agent.
Journal of the Brazilian Chemical Society | 2015
Junai C. S. Lopes; Jaqueline Lopes Damasceno; Pollyanna Francielli de Oliveira; Adriana P.M. Guedes; Denise Crispim Tavares; Victor M. Deflon; Norberto Peporine Lopes; Marcos Pivatto; Alzir A. Batista; Pedro Ivo da S. Maia; Gustavo Von Poelhsitz
The synthesis, characterization and cytotoxic activity of cis-[Ru(dicl)(dppm)2]PF6 and cis-[Ru(ibu)(dppm)2]PF6, (dppm = 1,1-bis(diphenylphosphine)methane; dicl = diclofenac anion and ibu = ibuprofen anion), are described in this work. Complexes were characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), UV-Vis, 31P{1H} nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRESIMS). X-ray structure of cis-[Ru(ibu)(dppm)2]PF6 is also described. Preliminary calf thymus DNA (ct-DNA) binding studies were carried out by UV-Vis and viscosity experiments, with results suggesting the existence of electrostatic interactions between ruthenium complexes and ct-DNA. Cytotoxicity assays were carried out on a panel of human cancer cell lines and a human normal cell line. Complexes displayed a high to moderate cytotoxicity with IC50 ranging from 5 to 47 µmol L-1. cis-[Ru(ibu) (dppm)2]PF6 was found to be the most active, with IC50 values lower than cisplatin. The degree of cytotoxicity was maintained for the normal cell line, although cis-[Ru(ibu)(dppm)2]PF6 exhibited a similar selectivity to that of cisplatin but with a higher activity for at least two tumor cell lines which evidences a promising anticancer candidate and selects this complex for further experiments.
Journal of Inorganic Biochemistry | 2017
Mônica Soares Costa; Yasmim G. Gonçalves; Débora Cristina de Oliveira Nunes; Danielle R. Napolitano; Pedro Ivo da S. Maia; Renata Santos Rodrigues; Veridiana M. Rodrigues; Gustavo Von Poelhsitz; Kelly Aparecida Geraldo Yoneyama
Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. The many complications presented by the current treatment - including high toxicity, high cost and parasite resistance - make the development of new therapeutic agents indispensable. The present study aims to evaluate the anti-Leishmania potential of new ruthenium(II) complexes, cis‑[RuII(η2-O2CR)(dppm)2]PF6, with dppm=bis(diphenylphosphino)methane and R=4-butylbenzoate (bbato) 1, 4-(methylthio)benzoate (mtbato) 2 and 3-hydroxy-4-methoxybenzoate (hmxbato) 3, in promastigote cytotoxicity and their effect on parasite-host interaction. The cytotoxicity of complexes was analyzed by MTT assay against Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Leishmania) infantum promastigotes and the murine macrophage (RAW 264.7). The effect of complexes on parasite-host interaction was evaluated by in vitro infectivity assay performed in the presence of two different concentrations of each complex: the promastigote IC50 value and the concentration nontoxic to 90% of RAW 264.7 macrophages. Complexes 1-3 exhibited potent cytotoxic activity against all Leishmania species assayed. The IC50 values ranged from 7.52-12.59μM (complex 1); 0.70-3.28μM (complex 2) and 0.52-1.75μM (complex 3). All complexes significantly inhibited the infectivity index at both tested concentrations. The infectivity inhibitions ranged from 37 to 85%. Interestingly, the infectivity inhibitions due to complex action did not differ significantly at either of the tested concentrations, except for the complex 1 against Leishmania (Leishmania) infantum. The infectivity inhibitions resulted from reductions in both percentage of infected macrophages and number of parasites per macrophage. Taken together the results suggest remarkable leishmanicidal activity in vitro by these new ruthenium(II) complexes.
Current Clinical Pharmacology | 2013
Paula Carolina de Souza; Pedro Ivo da S. Maia; Heloisa B. de Barros; Clarice Queico Fujimura Leite; Victor M. Deflon; Fernando Rogério Pavan
Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis (MTB) and still an important public health problem worldwide. Some factors like the emergence of multidrug resistant (MDR) and extensively drug-resistant (XDR) strains make urgent the research of new active compounds. Searching for new inorganic compounds against TB, three new dioxovanadium(V) complexes were obtained upon reaction of [VO(acac)2] with hydrazone and thiosemicarbazone ligands derived from di-2-pyridyl ketone. Spectroscopic studies and X-ray crystallography revealed asymmetrically oxo bridged binuclear complexes of the type [{VO(L(1,2))}2(μ-O)2], involving the hydrazone ligands, while a mononuclear square pyramidal complex of the type [VO2(L(3))] was formed with the thiosemicarbazone ligand. The compounds were tested against M. tuberculosis and three of them, with MICs values between 2.00 and 3.76 μM were considered promising for TB treatment. Such MIC values are comparable or better than those found for some drugs currently used in TB treatment.
bioRxiv | 2018
Carla D. Lopes; Ana Paula Segantin Gaspari; Ronaldo J. Oliveira; Ulrich Abram; José Paulo Aldério Almeida; Pedro Ivo da S. Maia; Joao Silva; Sérgio de Albuquerque; Zumira A. Carneiro
Chagas disease remains a serious public health concern with unsatisfactory treatment outcomes due to strain-specific drug resistance and various side effects. To identify new therapeutic drugs against Trypanosoma cruzi, we evaluated both the in vitro and in vivo activity of the organometallic gold(III) complex [Au(Hdamp)(L14)]Cl (L1 = SNS- donating thiosemicarbazone), which was denoted 4-Cl. Our results demonstrated that 4- Cl was more effective than benznidazole (Bz) in eliminating both the extracellular trypomastigote and the intracellular amastigote forms of the parasite without cytotoxic effects on mammalian cells. In very-low-dose in vivo assays, 4-Cl reduced parasitaemia and tissue parasitism in addition to protecting the liver and heart from tissue damage. All these changes resulted in the survival of 100% of the mice treated with 4-Cl during the acute phase. We hypothesised that 4-Cl can act directly on the parasite and may participate in the modulation of IFN-γ production at the acute stage of the disease. Molecular docking simulations showed that the compound may interact with cruzain, a thiol protease considered a possible antiparasitic drug target, primarily by hydrophobic interactions. These analyses predicted that the Cys25 residue in the cruzain binding site is approximately 3.0 Å away from the S and Au atoms of the gold compound, which could suggest formation of a possible covalent bond between cruzain and the inhibitor. Overall, we confirmed the potential of 4-Cl as a new candidate for Chagas disease treatment.
Journal of Coordination Chemistry | 2018
Yan F. Silva; Beatriz A. Riga; Victor M. Deflon; Jhonathan R. Souza; Leonardo H. Furlan e Silva; Antonio Eduardo da Hora Machado; Pedro Ivo da S. Maia; Valdemiro P. Carvalho-Jr; Beatriz E. Goi
Abstract A series of new cobalt(II) complexes of Schiff base derived from salicylaldehyde and different cycloalkylamines (cycloalkyl = cyclopentyl-1a, cyclohexyl-1b, and cycloheptyl-1c) was synthesized: [Co(CyPen-Salicyl)2] (2a), [Co(CyHex-Salicyl)2] (2b), and [Co(CyHep-Salicyl)2] (2c). The bis(phenoxyiminato)Co(II) complexes (2a-2c) have been fully characterized by FTIR and UV–vis spectroscopy, elemental analysis, cyclic voltammetry, computational methods, and two of the complexes were further studied by single crystal X-ray crystallography. The X-ray structure analysis of 2a-b shows that the geometry around the metal atom is a distorted tetrahedron, confirming the spectroscopic data. Electrochemical studies suggest that the redox potential of 2a-2c are sensitive to the substituent group, decreasing in order cyclopentyl > cyclohexyl > cycloheptyl. Complexes 2a-2c were used as controlling agents for the polymerization of vinyl acetate (VAc) initiated by AIBN, according to a cobalt-mediated radical polymerization (CMRP) mechanism. The VAc polymerization mediated by 2a-2c suggests that the level of control can be slightly tuned by the substitution of the cycloalkyl group on the Schiff base ligand. Complex 2b showed the smaller discrepancy between observed and calculated molecular weight, and narrower molecular weight distribution. GRAPHICAL ABSTRACT
Acta Crystallographica Section E-structure Reports Online | 2014
Murilo C. Carroccia; Rafaela B. P. Pesci; Pedro Ivo da S. Maia; Victor M. Deflon
The neutral binuclear molecule of the title complex, [V2(C15H12N2O2S)2(CH3O)2O2], exhibits inversion symmetry and consists of two oxidovanadium(V) (VO)3+ fragments, each coordinated by a dianionic and O,N′,O′-chelating N′-(1-benzoylprop-1-en-2-yl)thiophene-2-carbohydrazidate ligand. The V5+ cations are bridged by two asymmetrically bonding methanolate ligands [V—O = 1.8155 (12) and 2.3950 (13) Å] originating from the deprotonation of the methanol solvent. The coordination sphere of the VV atom is distorted octahedral, with the equatorial plane defined by the three donor atoms of the thiophene-2-carbohydrazidate ligand and the O atom of a methanolate unit. The axial positions are occupied by the oxide group and the remaining methanolate ligand. The axially bound methanolate ligand shows a longer V—O bond length due to the trans influence caused by the tightly bonded oxide group. The packing of the complex molecules is dominated by dispersion forces.