Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro J. Beltran is active.

Publication


Featured researches published by Pedro J. Beltran.


Molecular Cancer Therapeutics | 2009

AMG 479, a fully human anti–insulin-like growth factor receptor type I monoclonal antibody, inhibits the growth and survival of pancreatic carcinoma cells

Pedro J. Beltran; Petia Mitchell; Young-A Chung; Elaina Cajulis; John K. H. Lu; Brian Belmontes; Joanne Ho; Mei Mei Tsai; Min Zhu; Steven Vonderfecht; Renato Baserga; Richard Kendall; Robert Radinsky; Frank J. Calzone

Pancreatic carcinoma is a leading cause of cancer deaths, and recent clinical trials of a number of oncology therapeutics have not substantially improved clinical outcomes. We have evaluated the therapeutic potential of AMG 479, a fully human monoclonal antibody against insulin-like growth factor (IGF) type I receptor (IGF-IR), in two IGF-IR–expressing pancreatic carcinoma cell lines, BxPC-3 and MiaPaCa2, which also differentially express insulin receptor (INSR). AMG 479 bound to IGF-IR (KD 0.33 nmol/L) and blocked IGF-I and IGF-II binding (IC50 < 0.6 nmol/L) without cross-reacting to INSR. AMG 479 completely inhibited ligand-induced (IGF-I, IGF-II, and insulin) activation of IGF-IR homodimers and IGF-IR/INSR hybrids (but not INSR homodimers) leading to reduced cellular viability in serum-deprived cultures. AMG 479 inhibited >80% of basal IGF-IR activity in BxPC-3 and MiaPaCa2 xenografts and prevented IGF-IR and IGF-IR/INSR hybrid activation following challenge with supraphysiologic concentrations of IGF-I. As a single agent, AMG 479 inhibited (∼80%) the growth of pancreatic carcinoma xenografts, and long-term treatment was associated with reduced IGF-IR signaling activity and expression. Efficacy seemed to be the result of two distinct biological effects: proapoptotic in BxPC-3 and antimitogenic in MiaPaCa2. The combination of AMG 479 with gemcitabine resulted in additive inhibitory activity both in vitro and in vivo. These results indicate that AMG 479 is a clinical candidate, both as a single agent and in combination with gemcitabine, for the treatment of patients with pancreatic carcinoma.[Mol Cancer Ther 2009;8(5):1095–105]


Molecular Cancer Therapeutics | 2010

Selective and Potent Raf Inhibitors Paradoxically Stimulate Normal Cell Proliferation and Tumor Growth

Josette Carnahan; Pedro J. Beltran; Carol Babij; Quynh Le; Mark Rose; Steven Vonderfecht; Joseph L. Kim; Adrian L. Smith; Karthik Nagapudi; Martin A. Broome; Manory Fernando; Hue Kha; Brian Belmontes; Robert Radinsky; Richard Kendall; Teresa L. Burgess

Raf inhibitors are under clinical investigation, specifically in patients with tumor types harboring frequent activating mutations in B-Raf. Here, we show that cell lines and tumors harboring mutant B-Raf were sensitive to a novel series of Raf inhibitors (e.g., V600EB-Raf A375, IC50 on cells = 2 nmol/L; ED50 on tumor xenografts = 1.3 mg/kg). However, in cells and tumors with wild-type B-Raf, exposure to Raf inhibitors resulted in a dose-dependent and sustained activation of mitogen-activated protein kinase signaling. In some of these cell lines, Raf inhibition led to entry into the cell cycle, enhanced proliferation, and significantly stimulated tumor growth in vivo. Inhibition with structurally distinct Raf inhibitors or isoform-specific small interfering RNA knockdown of Raf showed that these effects were mediated directly through Raf. Either A-Raf or C-Raf mediated the Raf inhibitor–induced mitogen-activated protein kinase pathway activation in an inhibitor-specific manner. These paradoxical effects of Raf inhibition were seen in malignant and normal cells in vitro and in vivo. Hyperplasia of normal epithelial cells in the esophagus and the stomach was evident in mice with all efficacious Raf inhibitors (n = 8) tested. An implication of these results is that Raf inhibitors may induce unexpected normal cell and tumor tissue proliferation in patients. Mol Cancer Ther; 9(8); 2399–410. ©2010 AACR.


Journal of Pharmacology and Experimental Therapeutics | 2011

Efficacy of Ganitumab (AMG 479), Alone and in Combination with Rapamycin, in Ewing's and Osteogenic Sarcoma Models

Pedro J. Beltran; Young-Ah Chung; Gordon Moody; Petia Mitchell; Elaina Cajulis; Steven Vonderfecht; Richard Kendall; Robert Radinsky; Frank J. Calzone

Ewings and osteogenic sarcoma are two of the leading causes of cancer deaths in children and adolescents. Recent data suggest that sarcomas may depend on the insulin-like growth factor type 1 (IGF-1) receptor (IGF1R) and/or the insulin receptor (INSR) to drive tumor growth, survival, and resistance to mammalian target of rapamycin complex 1 (mTORC1) inhibitors. We evaluated the therapeutic value of ganitumab (AMG 479; C6472H10028N1728O2020S42), an anti-IGF1R, fully human monoclonal antibody, alone and in combination with rapamycin (mTORC1 inhibitor) in Ewings (SK-ES-1 and A673) and osteogenic (SJSA-1) sarcoma models. IGF1R was activated by IGF-1 but not by insulin in each sarcoma model. INSR was also activated by IGF-1 in the SJSA-1 and SK-ES-1 models, but not in the A673 model where insulin was the preferred INSR ligand. Ganitumab significantly inhibited the growth of SJSA-1 and SK-ES-1 xenografts; inhibition was associated with decreased IGF1R and Akt phosphorylation, reduced total IGF1R and bromodeoxyuridine detection, and increased caspase-3 expression. Ganitumab inhibited rapamycin-induced IGF1R, Akt, and glycogen synthase kinase-3β hyperphosphorylation in each sarcoma model. However, ganitumab in combination with rapamycin also resulted in a marked increase in INSR expression and activity in the SJSA-1 and A673 models. The in vivo efficacy of ganitumab in the two ganitumab-sensitive models (SJSA-1 and SK-ES-1) was significantly enhanced in combination with rapamycin. Our results support studying ganitumab in combination with mTORC1 inhibitors for the treatment of sarcomas and suggest that INSR signaling is an important mechanism of resistance to IGF1R blockade.


Cancer Immunology, Immunotherapy | 1996

Bcl-2 protects cells from cytokine-induced nitric-oxide-dependent apoptosis

Keping Xie; Suyun Huang; Yunfang Wang; Pedro J. Beltran; Shin Hun Juang; Zhongyun Dong; John C. Reed; Timothy J. McDonnell; David J. McConkey; Isaiah J. Fidler

Abstract Cytokine-mediated cell death in tumor cells can be achieved through endogenous nitric oxide (NO) from within tumor cells or exogenous NO from either activated macrophages or endothelial cells. The purpose of this study was to determine the role of Bcl-2 in NO-mediated apoptosis. The incubation of murine L929 and NIH3T3 cells with interleukin-1α (IL-1α) and interferon γ (IFNγ) induced high endogenous NO production only in the L929 cells that also underwent apoptosis. NIH3T3 cells were not resistant to NO-mediated apoptosis. In fact, the incubation of L929 and NIH3T3 cells with exogenous NO derived from NO donors, sodium nitroprusside, or S-nitroso-N-acetyl-DL-penicillamine (SNAP) induced death, characterized by typical apoptotic morphology and DNA fragmentation, in both cell types, but to a higher degree in NIH3T3 cells than in the L929 cells. We then measured the effect of Bcl-2 expression on exogenous NO-induced apoptosis. At both the mRNA and protein levels, L929 fibroblasts expressed higher levels of endogenous mouse Bcl-2 than did NIH3T3 cells. At the same time, L929 cells were much more resistant to exogenous NO-induced cell death than were NIH3T3 cells. The inverse correlation between mouse Bcl-2 expression and sensitivity to exogenous NO-mediated cell death was also found in the murine K-1735 melanoma C-23 and X-21 clonal populations. Transfection of both NIH3T3 cells and L929 cells with the human bcl-2 gene led to resistance to both exogenous and endogenous NO-mediated apoptosis. These data demonstrate that NO-mediated apoptosis can be suppressed by expression of Bcl-2, suggesting that abnormal expression of Bcl-2 may influence the efficacy of tumor immunotherapy.


Biochemical Pharmacology | 1997

Chemosensitization of cancer cells by the staurosporine derivative CGP 41251 in association with decreased P-glycoprotein phosphorylation

Pedro J. Beltran; Dominic Fan; Isaiah J. Fidler; Catherine A. O'Brian

The multidrug resistance (MDR) phenotype of cancer cells often correlates with the level and activity of protein kinase C (PKC). We studied the ability of the staurosporine derivative PKC inhibitor CGP 41251 to reverse the MDR phenotype in MCF-7 human breast carcinoma and CT-26 murine colon adenocarcinoma cells and their doxorubicin (DXR)-selected MDR variants. Nontoxic concentrations of CGP 41251 significantly enhanced the cytotoxic properties of DXR, actinomycin D, vinblastine, and vincristine but not those of 5-fluorouracil. CGP 41251 increased intracellular concentrations of [14C]DXR but did not cause significant differences in P-glycoprotein (P-gp) expression. Pretreatment of MCF-7adr cells with phorbol 12-myristate 13-acetate reduced the CGP 41251 mediated intracellular accumulation of [14C]DXR. At concentrations that induced drug uptake, CGP 41251 significantly decreased the level of P-gp phosphorylation in the cells but did not compete with [3H]azidopine for photoaffinity labeling of P-gp. These data provide evidence that CGP 41251 reverses the MDR phenotype by modulating the phosphorylation of P-gp and/or other PKC substrates critical to the maintenance of the MDR phenotype.


Melanoma Research | 1995

Treatment of nude mice with 4-amidinoindan -1- one2 '- amidinohydrazone, a new S-adenosylmethionine decarboxylase inhibitor, delays growth and inhibits metastasis of human melanoma cells.

Mordechai Gutman; Pedro J. Beltran; Dominic Fan; M. G. Delworth; Rakesh K. Singh; Michael R. Wilson; Isaiah J. Fidler

CGP 48664A (4-amidinoindan-1-one2‘-amidinohydrazone) is a novel inhibitor of S-adenosyl-methionine decarboxylase (SAMDC), a key enzyme in the biosynthesis of polyamines, which are themselves essential for proliferation of mammalian cells. Seven different human melanoma cell lines were treated in vitro with CGP 48664A. High, intermediate and low levels of cytostasis were induced in four, one and two melanoma lines, respectively. This cytostasis was reversed by the addition of exogenous spermidine or spermine to the culture medium. The heterogeneous low metastatic (CGP 48664A-resistant) A375P cells and highly metastatic (CGP 48664A-sensitive) A375SM cells were implanted into the subcutis or injected intravenously into nude mice. Systemic daily administration of CGP 48664A significantly reduced the size of cutaneous lesions and the number of lung metastases in mice implanted with A375SM cells. No beneficial effects were found in mice injected with A375P cells. Drug activity was dose dependent, and maximal effects were observed when treatment began in mice with small tumour burdens. The data suggest that CGP 48664A is effective against melanoma metastasis in nude mice and that its activity should be tested in combination with other cytoreductive agents.


Journal of Medicinal Chemistry | 2015

Discovery of N-(4-(3-(2-Aminopyrimidin-4-yl)pyridin-2-yloxy)phenyl)-4-(4-methylthiophen-2-yl)phthalazin-1-amine (AMG 900), A Highly Selective, Orally Bioavailable Inhibitor of Aurora Kinases with Activity against Multidrug-Resistant Cancer Cell Lines

Stephanie Geuns-Meyer; Victor J. Cee; Holly L. Deak; Bingfan Du; Brian L. Hodous; Hanh Nho Nguyen; Philip R. Olivieri; Laurie B. Schenkel; Karina R. Vaida; Paul S. Andrews; Annette Bak; Xuhai Be; Pedro J. Beltran; Tammy L. Bush; Mary K. Chaves; Grace Tin-Yun Chung; Yang Dai; Patrick Eden; Kelly Hanestad; Liyue Huang; Min-Hwa Jasmine Lin; Jin Tang; Beth Ziegler; Robert Radinsky; Richard Kendall; Vinod F. Patel; Marc Payton

Efforts to improve upon the physical properties and metabolic stability of Aurora kinase inhibitor 14a revealed that potency against multidrug-resistant cell lines was compromised by increased polarity. Despite its high in vitro metabolic intrinsic clearance, 23r (AMG 900) showed acceptable pharmacokinetic properties and robust pharmacodynamic activity. Projecting from in vitro data to in vivo target coverage was not practical due to disjunctions between enzyme and cell data, complex and apparently contradictory indicators of binding kinetics, and unmeasurable free fraction in plasma. In contrast, it was straightforward to relate pharmacokinetics to pharmacodynamics and efficacy by following the time above a threshold concentration. On the basis of its oral route of administration, a selectivity profile that favors Aurora-driven pharmacology and its activity against multidrug-resistant cell lines, 23r was identified as a potential best-in-class Aurora kinase inhibitor. In phase 1 dose expansion studies with G-CSF support, 23r has shown promising single agent activity.


Investigational New Drugs | 1997

Potent induction of human colon cancer cell uptake of chemotherapeutic drugs by N-myristoylated protein kinase C-α (PKC-α) pseudosubstrate peptides through a P-glycoprotein-independent mechanism

Philip J. Bergman; Karen R. Gravitt; Nancy E. Ward; Pedro J. Beltran; Krishna P. Gupta; Catherine A. O'Brian

Phorbol ester protein kinase C (PKC) activators and PKC isozyme over-expression have been shown to significantly reduce intracellular accumulation of chemotherapeutic drugs, in association with the induction of multidrug resistance (MDR) in drug-sensitive cancer cells and enhancement of drug resistance in MDR cancer cells. These observations constitute solid evidence that PKC plays a significant role in the MDR phenotype of cancer cells. PKC-catalyzed phosphorylation of the drug-efflux pump P-glycoprotein was recently ruled out as a contributing factor in MDR. At present, the sole drug transport-related event that has been identified as a component of the role of PKC in MDR is PKC-induced expression of the P-glycoprotein-encoding gene mdr1. The objective of this study was to test the hypothesis that PKC can modulate the uptake of chemotherapeutic drugs in cancer cells independently of P-glycoprotein. We analyzed the effects of selective PKC activators/inhibitors on the uptake of radiolabelled cytotoxic drugs by cultured human colon cancer cells that lacked P-glycoprotein activity and did not express the drug efflux pump at the level of message (mdr1) or protein. We found that the selective PKC activator 12-O-tetradecanoylphorbol-13-acetate (TPA) significantly reduced uptake of [14C] Adriamycin and [3H] vincristine in human colon cancer cells devoid of P-glycoprotein activity, and that PKC-inhibitory N-myristoylated PKC-α pseudosubstrate synthetic peptides potently and selectively induced uptake of the cytotoxic drugs in the phorbol ester-treated and non-treated colon cancer cells. TPA treatment of the cells did not induce expression of either P-glycoprotein or its message mdr1. In contrast with [14C]Adriamycin and [3H] vincristine uptake, [3H] 5-fluorouracil uptake by the cells was unaffected by TPA and reduced by the PKC-inhibitory peptides. These results indicate that PKC activation can significantly reduce the uptake of multiple cytotoxic drugs by cancer cells independently of P-glycoprotein, and that N-myristoylated PKC-α pseudosubstrate peptides potently and selectively induce uptake of multiple cytotoxic drugs in cultured human colon cancer cells by a novel mechanism that does not involve P-glycoprotein and may involve PKC isozyme inhibition. Thus, N-myristoylated PKC-α pseudosubstrate peptides may offer a basis for the development of agents that reverse intrinsic drug resistance in human colon cancer.


Journal of Medicinal Chemistry | 2015

Discovery of 1H-Pyrazol-3(2H)-ones as Potent and Selective Inhibitors of Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK).

Adrian L. Smith; Kristin L. Andrews; Holger Beckmann; Steven Bellon; Pedro J. Beltran; Shon Booker; Hao Chen; Young-Ah Chung; Noel D. D’Angelo; Jennifer Dao; Kenneth R. Dellamaggiore; Peter Jaeckel; Richard Kendall; Katja Labitzke; Alexander M. Long; Silvia Materna-Reichelt; Petia Mitchell; Mark H. Norman; David Powers; Mark Rose; Paul Shaffer; Michelle M. Wu; J. Russell Lipford

The structure-based design and optimization of a novel series of selective PERK inhibitors are described resulting in the identification of 44 as a potent, highly selective, and orally active tool compound suitable for PERK pathway biology exploration both in vitro and in vivo.


ACS Medicinal Chemistry Letters | 2015

Oxopyrido[2,3-d]pyrimidines as Covalent L858R/T790M Mutant Selective Epidermal Growth Factor Receptor (EGFR) Inhibitors

Ryan Wurz; Liping H. Pettus; Kate S. Ashton; James Brown; Jian Jeffrey Chen; Brad Herberich; Fang-Tsao Hong; Essa Hu-Harrington; Tom Nguyen; David J. St. Jean; Seifu Tadesse; David Bauer; Michele Kubryk; Jinghui Zhan; Keegan Cooke; Petia Mitchell; Kristin L. Andrews; Faye Hsieh; Dean Hickman; Nataraj Kalyanaraman; Tian Wu; Darren L. Reid; Edward K. Lobenhofer; Dina A. Andrews; Nancy E. Everds; Roberto E. Guzman; Andrew T. Parsons; Simon J. Hedley; Jason Tedrow; Oliver R. Thiel

In nonsmall cell lung cancer (NSCLC), the threonine(790)-methionine(790) (T790M) point mutation of EGFR kinase is one of the leading causes of acquired resistance to the first generation tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. Herein, we describe the optimization of a series of 7-oxopyrido[2,3-d]pyrimidinyl-derived irreversible inhibitors of EGFR kinase. This led to the discovery of compound 24 which potently inhibits gefitinib-resistant EGFR(L858R,T790M) with 100-fold selectivity over wild-type EGFR. Compound 24 displays strong antiproliferative activity against the H1975 nonsmall cell lung cancer cell line, the first line mutant HCC827 cell line, and promising antitumor activity in an EGFR(L858R,T790M) driven H1975 xenograft model sparing the side effects associated with the inhibition of wild-type EGFR.

Collaboration


Dive into the Pedro J. Beltran's collaboration.

Top Co-Authors

Avatar

Dominic Fan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Isaiah J. Fidler

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Petia Mitchell

University of California

View shared research outputs
Top Co-Authors

Avatar

Adrian L. Smith

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Elaina Cajulis

University of California

View shared research outputs
Top Co-Authors

Avatar

Yunfang Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge