Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro J. Gomez-Pinilla is active.

Publication


Featured researches published by Pedro J. Gomez-Pinilla.


Gut | 2014

A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen

Gianluca Matteoli; Pedro J. Gomez-Pinilla; Andrea Nemethova; Martina Di Giovangiulio; Cathy Cailotto; Sjoerd H. van Bree; Klaus Michel; Kevin J. Tracey; Michael Schemann; Werend Boesmans; Pieter Vanden Berghe; Guy E. Boeckxstaens

The cholinergic anti-inflammatory pathway (CAIP) has been proposed as a key mechanism by which the brain, through the vagus nerve, modulates the immune system in the spleen. Vagus nerve stimulation (VNS) reduces intestinal inflammation and improves postoperative ileus. We investigated the neural pathway involved and the cells mediating the anti-inflammatory effect of VNS in the gut. The effect of VNS on intestinal inflammation and transit was investigated in wild-type, splenic denervated and Rag-1 knockout mice. To define the possible role of α7 nicotinic acetylcholine receptor (α7nAChR), we used knockout and bone marrow chimaera mice. Anterograde tracing of vagal efferents, cell sorting and Ca2+ imaging were used to reveal the intestinal cells targeted by the vagus nerve. VNS attenuates surgery-induced intestinal inflammation and improves postoperative intestinal transit in wild-type, splenic denervated and T-cell-deficient mice. In contrast, VNS is ineffective in α7nAChR knockout mice and α7nAChR-deficient bone marrow chimaera mice. Anterograde labelling fails to detect vagal efferents contacting resident macrophages, but shows close contacts between cholinergic myenteric neurons and resident macrophages expressing α7nAChR. Finally, α7nAChR activation modulates ATP-induced Ca2+ response in small intestine resident macrophages. We show that the anti-inflammatory effect of the VNS in the intestine is independent of the spleen and T cells. Instead, the vagus nerve interacts with cholinergic myenteric neurons in close contact with the muscularis macrophages. Our data suggest that intestinal muscularis resident macrophages expressing α7nAChR are most likely the ultimate target of the gastrointestinal CAIP.


Nature Reviews Gastroenterology & Hepatology | 2012

New therapeutic strategies for postoperative ileus

Sjoerd H. van Bree; Andrea Nemethova; Cathy Cailotto; Pedro J. Gomez-Pinilla; Gianluca Matteoli; G. E. Boeckxstaens

Patients undergoing an abdominal surgical procedure develop a transient episode of impaired gastrointestinal motility or postoperative ileus. Importantly, postoperative ileus is a major determinant of recovery after intestinal surgery and leads to increased morbidity and prolonged hospitalization, which is a great economic burden to health-care systems. Although a variety of strategies reduce postoperative ileus, including multimodal postoperative rehabilitation (fast-track care) and minimally invasive surgery, none of these methods have been completely successful in shortening the duration of postoperative ileus. The aetiology of postoperative ileus is multifactorial, but insights into the pathogenesis of postoperative ileus have identified intestinal inflammation, triggered by surgical handling, as the main mechanism. The importance of this inflammatory response in postoperative ileus is underscored by the beneficial effect of pharmacological interventions that block the influx of leukocytes. New insights into the pathophysiology of postoperative ileus and the involvement of the innate and the adaptive (T-helper type 1 cell-mediated immune response) immune system offer interesting and important new approaches to prevent postoperative ileus. In this Review, we discuss the latest insights into the mechanisms behind postoperative ileus and highlight new strategies to intervene in the postoperative inflammatory cascade.


PLOS ONE | 2014

Mast cells play no role in the pathogenesis of postoperative ileus induced by intestinal manipulation

Pedro J. Gomez-Pinilla; Giovanna Farro; Martina Di Giovangiulio; Nathalie Stakenborg; Andrea Nemethova; Annick de Vries; Adrian Liston; Thorsten B. Feyerabend; Hans Reimwer Rodewald; Guy E. Boeckxstaens; Gianluca Matteoli

Introduction Intestinal manipulation (IM) during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI). However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC) resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3Cre/+, devoid of mast cells but with intact Kit signaling. Design The role of mast cells in the development of POI and intestinal inflammation was evaluated assessing gastrointestinal transit and muscularis externa inflammation after IM in two strains of mice lacking mast cells, i.e. KitW-sh/W-sh and Cpa3Cre/+ mice, and by use of the mast cell stabilizer cromolyn. Results KitW-sh/W-sh mice lack ICC networks and already revealed significantly delayed gastrointestinal transit even before surgery. IM did not further delay intestinal transit, but induced infiltration of myeloperoxidase positive cells, expression of inflammatory cytokines and recruitment of monocytes and neutrophils into the muscularis externa. On the contrary, Cpa3Cre/+ mice have a normal network of ICC and normal gastrointestinal. Surprisingly, IM in Cpa3Cre/+ mice caused delay in gut motility and intestinal inflammation as in wild type littermates mice (Cpa3+/+). Furthermore, treatment with the mast cell inhibitor cromolyn resulted in an inhibition of mast cells without preventing POI. Conclusions Here, we confirm that IM induced mast cell degranulation. However, our data demonstrate that mast cells are not required for the pathogenesis of POI in mice. Although there might be species differences between mouse and human, our results argue against mast cell inhibitors as a therapeutic approach to shorten POI.


Gut | 2013

Inhibition of spleen tyrosine kinase as treatment of postoperative ileus

Sjoerd H. van Bree; Pedro J. Gomez-Pinilla; Fleur S van de Bovenkamp; Martina Di Giovangiulio; Giovanna Farro; Andrea Nemethova; Cathy Cailotto; Wouter J. de Jonge; Kevin Lee; Cesar Ramirez-Molina; Dave Lugo; Michael J. Skynner; G. E. Boeckxstaens; Gianluca Matteoli

Objective Intestinal inflammation resulting from manipulation-induced mast cell activation is a crucial mechanism in the pathophysiology of postoperative ileus (POI). Recently it has been shown that spleen tyrosine kinase (Syk) is involved in mast cell degranulation. Therefore, we have evaluated the effect of the Syk-inhibitor GSK compound 143 (GSK143) as potential treatment to shorten POI. Design In vivo: in a mouse model of POI, the effect of the Syk inhibitor (GSK143) was evaluated on gastrointestinal transit, muscular inflammation and cytokine production. In vitro: the effect of GSK143 and doxantrazole were evaluated on cultured peritoneal mast cells (PMCs) and bone marrow derived macrophages. Results In vivo: intestinal manipulation resulted in a delay in gastrointestinal transit at t=24u2005h (Geometric Center (GC): 4.4±0.3). Doxantrazole and GSK143 significantly increased gastrointestinal transit (GC doxantrazole (10u2005mg/kg): 7.2±0.7; GSK143 (1u2005mg/kg): 7.6±0.6), reduced inflammation and prevented recruitment of immune cells in the intestinal muscularis. In vitro: in PMCs, substance P (0–90u2005μM) and trinitrophenyl (0–4u2005μg/ml) induced a concentration-dependent release of β-hexosaminidase. Pretreatment with doxantrazole and GSK143 (0.03–10u2005μM) concentration dependently blocked substance P and trinitrophenyl induced β-hexosaminidase release. In addition, GSK143 was able to reduce cytokine expression in endotoxin-treated bone marrow derived macrophages in a concentration-dependent manner. Conclusions The Syk inhibitor GSK143 reduces macrophage activation and mast cell degranulation in vitro. In addition, it inhibits manipulation-induced intestinal muscular inflammation and restores intestinal transit in mice. These findings suggest that Syk inhibition may be a new tool to shorten POI.


Neurogastroenterology and Motility | 2013

Systemic inflammation with enhanced brain activation contributes to more severe delay in postoperative ileus.

S.H.W. van Bree; Cathy Cailotto; M. Di Giovangiulio; E. Jansen; J. van der Vliet; Lea Costes; Inge Depoortere; Pedro J. Gomez-Pinilla; Gianluca Matteoli; Guy E. Boeckxstaens

The severity of postoperative ileus (POI) has been reported to result from decreased contractility of the muscularis inversely related to the number of infiltrating leukocytes. However, we previously observed that the severity of POI is independent of the number of infiltrating leukocytes, indicating that different mechanisms must be involved. Here, we hypothesize that the degree of tissue damage in response to intestinal handling determines the upregulation of local cytokine production and correlates with the severity of POI.


PLOS ONE | 2013

Nicotine attenuates activation of tissue resident macrophages in the mouse stomach through the β2 nicotinic acetylcholine receptor.

Andrea Nemethova; Klaus Michel; Pedro J. Gomez-Pinilla; Guy E. Boeckxstaens; Michael Schemann

Background The cholinergic anti-inflammatory pathway is an endogenous mechanism by which the autonomic nervous system attenuates macrophage activation via nicotinic acetylcholine receptors (nAChR). This concept has however not been demonstrated at a cellular level in intact tissue. To this end, we have studied the effect of nicotine on the activation of resident macrophages in a mouse stomach preparation by means of calcium imaging. Methods Calcium transients ([Ca2+]i) in resident macrophages were recorded in a mouse stomach preparation containing myenteric plexus and muscle layers by Fluo-4. Activation of macrophages was achieved by focal puff administration of ATP. The effects of nicotine on activation of macrophages were evaluated and the nAChR involved was pharmacologically characterized. The proximity of cholinergic nerves to macrophages was quantified by confocal microscopy. Expression of β2 and α7 nAChR was evaluated by β2 immunohistochemistry and fluorophore-tagged α-bungarotoxin. Results In 83% of macrophages cholinergic varicose nerve fibers were detected at distances <900nm. The ATP induced [Ca2+]i increase was significantly inhibited in 65% or 55% of macrophages by 100µM or 10µM nicotine, respectively. This inhibitory effect was reversed by the β2 nAChR preferring antagonist dihydro-β-eryhtroidine but not by hexamethonium (non-selective nAChR-antagonist), mecamylamine (α3β4 nAChR-preferring antagonist), α-bungarotoxin or methyllycaconitine (both α7 nAChR-preferring antagonist). Macrophages in the stomach express β2 but not α7 nAChR at protein level, while those in the intestine express both receptor subunits. Conclusion This study is the first in situ demonstration of an inhibition of macrophage activation by nicotine suggesting functional signaling between cholinergic neurons and macrophages in the stomach. The data suggest that the β2 subunit of the nAChR is critically involved in the nicotine-induced inhibition of these resident macrophages.


Neurogastroenterology and Motility | 2017

Abdominal vagus nerve stimulation as a new therapeutic approach to prevent postoperative ileus

Nathalie Stakenborg; Albert Wolthuis; Pedro J. Gomez-Pinilla; Giovanna Farro; M. Di Giovangiulio; Goele Bosmans; Evelien Labeeuw; M. Verhaegen; Inge Depoortere; André D'Hoore; Gianluca Matteoli; Guy E. Boeckxstaens

Electrical stimulation of the cervical vagus nerve (VNS) prevents postoperative ileus (POI) in mice. As this approach requires an additional cervical procedure, we explored the possibility of peroperative abdominal VNS in mice and human.


Gut | 2017

CCR2-dependent monocyte-derived macrophages resolve inflammation and restore gut motility in postoperative ileus

Giovanna Farro; Michelle Stakenborg; Pedro J. Gomez-Pinilla; Evelien Labeeuw; Gera Goverse; Martina Di Giovangiulio; Nathalie Stakenborg; Elisa Meroni; Francesca D’Errico; Yvon Elkrim; Damya Laoui; Zofia M. Lisowski; Kristin A. Sauter; David A. Hume; Jo A. Van Ginderachter; Guy E. Boeckxstaens; Gianluca Matteoli

Objective Postoperative ileus (POI) is assumed to result from myeloid cells infiltrating the intestinal muscularis externa (ME) in patients undergoing abdominal surgery. In the current study, we investigated the role of infiltrating monocytes in a murine model of intestinal manipulation (IM)-induced POI in order to clarify whether monocytes mediate tissue damage and intestinal dysfunction or they are rather involved in the recovery of gastrointestinal (GI) motility. Design IM was performed in mice with defective monocyte migration to tissues (C-C motif chemokine receptor 2, Ccr2−/ − mice) and wild-type (WT) mice to study the role of monocytes and monocyte-derived macrophages (MΦs) during onset and resolution of ME inflammation. Results At early time points, IM-induced GI transit delay and inflammation were equal in WT and Ccr2 − / − mice. However, GI transit recovery after IM was significantly delayed in Ccr2 − / − mice compared with WT mice, associated with increased neutrophil-mediated immunopathology and persistent impaired neuromuscular function. During recovery, monocyte-derived MΦs acquire pro-resolving features that aided in the resolution of inflammation. In line, bone marrow reconstitution and treatment with MΦ colony-stimulating factor 1 enhanced monocyte recruitment and MΦ differentiation and ameliorated GI transit in Ccr2 − / − mice. Conclusion Our study reveals a critical role for monocyte-derived MΦs in restoring intestinal homeostasis after surgical trauma. From a therapeutic point of view, our data indicate that inappropriate targeting of monocytes may increase neutrophil-mediated immunopathology and prolong the clinical outcome of POI, while future therapies should be aimed at enhancing MΦ physiological repair functions.


Neurogastroenterology and Motility | 2016

Smooth muscle and neural dysfunction contribute to different phases of murine postoperative ileus

Giovanna Farro; Pedro J. Gomez-Pinilla; M. Di Giovangiulio; Nathalie Stakenborg; Michelangelo Auteri; Theo Thijs; Inge Depoortere; Gianluca Matteoli; Guy E. Boeckxstaens

Postoperative ileus (POI) is characterized by a transient inhibition of gastrointestinal (GI) motility after abdominal surgery mediated by the inflammation of the muscularis externa (ME). The aim of this study was to identify alterations in the enteric nervous system that may contribute to the pathogenesis of POI.


Handbook of experimental pharmacology | 2016

Postoperative Ileus: Pathophysiology, Current Therapeutic Approaches

Nathalie Stakenborg; Pedro J. Gomez-Pinilla; Guy E. Boeckxstaens

Postoperative ileus, which develops after each abdominal surgical procedure, is an iatrogenic disorder characterized by a transient inhibition of gastrointestinal motility. Its pathophysiology is complex involving pharmacological (opioids, anesthetics), neural, and immune-mediated mechanisms. The early neural phase, triggered by activation of afferent nerves during the surgical procedure, is short lasting compared to the later inflammatory phase. The latter starts after 3-6 h and lasts several days, making it a more interesting target for treatment. Insight into the triggers and immune cells involved is of great importance for the development of new therapeutic strategies. In this chapter, the pathogenesis and the current therapeutic approaches to treat postoperative ileus are discussed.

Collaboration


Dive into the Pedro J. Gomez-Pinilla's collaboration.

Top Co-Authors

Avatar

Gianluca Matteoli

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Guy E. Boeckxstaens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Nathalie Stakenborg

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Andrea Nemethova

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Giovanna Farro

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Martina Di Giovangiulio

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

M. Di Giovangiulio

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Cathy Cailotto

Netherlands Institute for Neuroscience

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inge Depoortere

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge