Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro L. Granja is active.

Publication


Featured researches published by Pedro L. Granja.


Journal of Biomaterials Science-polymer Edition | 2005

Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study

Isabel F. Amaral; Pedro L. Granja; Mário A. Barbosa

In the present work, the surface of chitosan membranes was modified using a phosphorylation method carried out at room temperature. Phosphorylation may be of particular interest in materials for orthopaedic applications, due to the cation-exchange properties of phosphate functionalities. Phosphate groups chelate calcium ions, thus inducing the deposition of an apatite-like layer known to improve the osteoconduction of polymer-based implants. Additionally, the negatively charged phosphate functionalities, together with the positively charged amine groups from chitosan, are expected to provide chitosan with an amphoteric character, which may be useful as a combinatorial therapeutic strategy, by simultaneously allowing the immobilization of signalling molecules like growth factors. Phosphorylation was carried out at room temperature using the H3PO4/Et3PO4/P2O5/butanol method. Surface characterization was performed by XPS, ATR–FT-IR, and SEM. Cross-sections were analyzed by SEM fitted with EDS. The phosphate content increased with the reaction time, as shown by XPS and ATR–FT-IR, a P/N atomic ratio of 0.73 being obtained after 48 h of treatment. High-resolution XPS spectra regarding C1s, O1s, N1s and P2p are discussed. The introduction of a neutralization step led to a reduction of P content, which pointed out to the presence of phosphates ionically bound to protonated amines, in addition to phosphate esters. EDS analysis of cross-sections revealed a gradual P reduction up to 50% towards the inner part of the membrane.


Journal of Controlled Release | 2010

Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells

José L. Santos; Hugo M. Oliveira; Deepti Pandita; João Rodrigues; Ana Paula Pêgo; Pedro L. Granja; Helena Tomás

A new family of gene delivery vectors is synthesized consisting of a medium-size generation PAMAM dendrimer (generation 5, with amine termini) core randomly linked at the periphery to hydrophobic chains that vary in length (12 to 16 carbon alkyl chains) and number (from 4.2 to 9.7 in average). The idea subjacent to the present work is to join the advantages of the cationic nature of the dendrimer with the capacity of lipids to interact with biological membranes. Unlike other amphiphilic systems designed for the same purpose, where the hydrophobic and hydrophilic moieties coexist in opposite sides, the present vectors have a hydrophilic interior and a hydrophobic corona. The vectors are characterized in respect to their ability to neutralize, bind and compact plasmid DNA (pDNA). The complexes formed between the vectors and pDNA are analyzed concerning their size, zeta-potential, resistance to serum nucleases, capacity of being internalized by cells and transfection efficiency. These new vectors show a remarkable capacity for mediating the internalization of pDNA with minimum cytotoxicity, being this effect positively correlated with the -CH(2)- content present in the hydrophobic corona. Gene expression in MSCs, a cell type with relevancy in the regenerative medicine clinical context, is also enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains.


Biomaterials | 2009

The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect.

Maritie Grellier; Pedro L. Granja; Jean-Christophe Fricain; Sílvia J. Bidarra; Martine Renard; Reine Bareille; Chantal Bourget; Joëlle Amédée; Mário A. Barbosa

Bone regeneration seems to be dependant on cell communication between osteogenic and endothelial cells arising from surrounding blood vessels. This study aims to determine whether endothelial cells can regulate the osteogenic potential of osteoprogenitor cells in vitro and in vivo, in a long bone defect, when co-immobilized in alginate microspheres. Alginate is a natural polymer widely used as a biomaterial for cell encapsulation. Human osteoprogenitors (HOP) from bone marrow mesenchymal stem cells were immobilized alone or together with human umbilical vein endothelial cells (HUVEC) inside irradiated, oxidized and RGD-grafted alginate microspheres. Immobilized cells were cultured in dynamic conditions and cell metabolic activity increased during three weeks. The gene expression of alkaline phosphatase and osteocalcin, both specific markers of the osteoblastic phenotype, and mineralization deposits were upregulated in co-immobilized HOPs and HUVECs, comparing to the immobilization of monocultures. VEGF secretion was also increased when HOPs were co-immobilized with HUVECs. Microspheres containing co-cultures were further implanted in a bone defect and bone formation was analysed by muCT and histology at 3 and 6 weeks post-implantation. Mineralization was observed inside and around the implanted microspheres containing the immobilized cells. However, when HOPs were co-immobilized with HUVECs, mineralization significantly increased. These findings demonstrate that co-immobilization of osteogenic and endothelial cells within RGD-grafted alginate microspheres provides a promising strategy for bone tissue engineering.


Acta Biomaterialia | 2014

Injectable alginate hydrogels for cell delivery in tissue engineering

Sílvia J. Bidarra; Cristina C. Barrias; Pedro L. Granja

Alginate hydrogels are extremely versatile and adaptable biomaterials, with great potential for use in biomedical applications. Their extracellular matrix-like features have been key factors for their choice as vehicles for cell delivery strategies aimed at tissue regeneration. A variety of strategies to decorate them with biofunctional moieties and to modulate their biophysical properties have been developed recently, which further allow their tailoring to the desired application. Additionally, their potential use as injectable materials offers several advantages over preformed scaffold-based approaches, namely: easy incorporation of therapeutic agents, such as cells, under mild conditions; minimally invasive local delivery; and high contourability, which is essential for filling in irregular defects. Alginate hydrogels have already been explored as cell delivery systems to enhance regeneration in different tissues and organs. Here, the in vitro and in vivo potential of injectable alginate hydrogels to deliver cells in a targeted fashion is reviewed. In each example, the selected crosslinking approach, the cell type, the target tissue and the main findings of the study are highlighted.


Biomaterials | 2009

The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers

Cristina C. Barrias; M. Cristina L. Martins; Graça Almeida-Porada; Mário A. Barbosa; Pedro L. Granja

The objective of this study was to compare the biological effects of two key cell-adhesive proteins, fibronectin (FN) and vitronectin (VN), upon adsorption onto molecularly-designed model surfaces. Single-component and mixed self-assembled monolayers (SAMs) of alkanethiols on gold with OH and CH(3) terminal groups were prepared at 100%, 65%, 36% and 0% of OH at the surface, to generate a range of surfaces with a simple chemistry and a wettability gradient. FN and VN were adsorbed under non-competitive (single-protein solutions) and competitive (multi-protein solutions) conditions, and compared at different levels: adsorbed amount (radiolabelling), elution, functional presentation of cell-binding domains (ELISA), and role in mediating cell adhesion (antibody-based assay). The observed trends were related to mesenchymal stem cell response in terms of adhesion and overall cell morphology. Under non-competitive conditions, adsorption of both proteins increased with surface hydrophobicity. The presence of competitive proteins significantly decreased the adsorbed amounts, although both proteins were still detected in all SAMs. Adsorption of FN followed a trend similar to that of non-competitive conditions, while adsorption of VN was higher on 100%OH-SAMs. Concerning elution, retention of adsorbed VN was always higher than that of FN. For both proteins, functional presentation of cell-binding domains was more effective on the more hydrophilic 100%OH-SAMs. This fact, coupled to the ability of this type of SAMs to selectively recruit and retain VN in the presence of competitive serum proteins, seems to correlate with the better cell response observed on these surfaces, as compared with hydrophobic 0%OH(100%CH(3))-SAMs.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Advanced biofabrication strategies for skin regeneration and repair

Rúben Pereira; Cristina C. Barrias; Pedro L. Granja; Paulo J. Bártolo

Skin is the largest organ of human body, acting as a barrier with protective, immunologic and sensorial functions. Its permanent exposure to the external environment can result in different kinds of damage with loss of variable volumes of extracellular matrix. For the treatment of skin lesions, several strategies are currently available, such as the application of autografts, allografts, wound dressings and tissue-engineered substitutes. Although proven clinically effective, these strategies are still characterized by key limitations such as patient morbidity, inadequate vascularization, low adherence to the wound bed, the inability to reproduce skin appendages and high manufacturing costs. Advanced strategies based on both bottom-up and top-down approaches offer an effective, permanent and viable alternative to solve the abovementioned drawbacks by combining biomaterials, cells, growth factors and advanced biomanufacturing techniques. This review details recent advances in skin regeneration and repair strategies, and describes their major advantages and limitations. Future prospects for skin regeneration are also outlined.


Biomacromolecules | 2011

Pectin-Based Injectable Biomaterials for Bone Tissue Engineering

F. Munarin; Susana Guerreiro; Maritie Grellier; Maria Cristina Tanzi; Mário A. Barbosa; P. Petrini; Pedro L. Granja

A variety of natural polymers and proteins are considered to be 3D cell culture structures able to mimic the extracellular matrix (ECM) to promote bone tissue regeneration. Pectin, a natural polysaccharide extracted from the plant cell walls and having a chemical structure similar to alginate, provides interesting properties as artificial ECM. In this work, for the first time, pectin, modified with an RGD-containing oligopeptide or not, is used as an ECM alternative to immobilize cells for bone tissue regeneration. The viability, metabolic activity, morphology, and osteogenic differentiation of immobilized MC3T3-E1 preosteoblats demonstrate the potential of this polysaccharide to keep immobilized cells viable and differentiating. Preosteoblasts immobilized in both types of pectin microspheres maintained a constant viability up to 29 days and were able to differentiate. The grafting of the RGD peptide on pectin backbone induced improved cell adhesion and proliferation within the microspheres. Furthermore, not only did cells grow inside but also they were able to spread out from the microspheres and to organize themselves in 3D structures producing a mineralized extracellular matrix. These promising results suggest that pectin can be proposed as an injectable cell vehicle for bone tissue regeneration.


Biomacromolecules | 2010

Immobilization of Human Mesenchymal Stem Cells within RGD-Grafted Alginate Microspheres and Assessment of Their Angiogenic Potential

Sílvia J. Bidarra; Cristina C. Barrias; Mário A. Barbosa; Raquel Soares; Pedro L. Granja

In this work, human mesenchymal stem cells (hMSC) immobilized in RGD-coupled alginate microspheres, with a binary composition of high and low molecular weight alginate, were investigated. Cells immobilized within RGD-alginate microspheres (during 21 days) showed metabolic activity, with an overall viability higher than 90%, short cell extensions, and, when induced, they were able to differentiate into the osteogenic lineage. In osteogenic conditions (comparing to basal conditions), immobilized cells presented alkaline phosphatase (ALP) activity and an upregulation of ALP, collagen type I, and Runx 2 expression. Moreover, mineralization was also detected in immobilized cells under osteogenic stimulus. In addition, it was demonstrated for the first time that MSCs immobilized in this 3D matrix were able to enhance the ability of neighboring endothelial cells to form tubelike structures. Overall, these findings represent a step forward in the development of injectable stem cell carriers for bone tissue engineering.


Acta Biomaterialia | 2011

Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments

Keila B. Fonseca; Sílvia J. Bidarra; Maria José Oliveira; Pedro L. Granja; Cristina C. Barrias

The development of sophisticated three-dimensional (3-D) cell culture microenvironments that recreate some of the complexity of the natural extracellular matrix (ECM) remains a challenging task. Here, the modification of alginate through partial crosslinking with a matrix metalloproteinase (MMP) cleavable peptide (proline-valine-glycine-leucine-isoleucine-glycine, PVGLIG) is described, and its use in the preparation of injectable, in situ crosslinkable hydrogel-like matrices is proposed. PVGLIG-grafted alginates were synthesized by carbodiimide chemistry and characterized. Their biological performance was evaluated by comparing the response of 3-D cultured mesenchymal stem cells (MSCs) to alginate hydrogels containing only cell-adhesion peptides (RGD-alginate) or both peptides (PVGLIG/RGD-alginate). After 1 week, cells remained essentially round within RGD-alginate, while they exhibited an elongated morphology within PVGLIG/RGD-alginate hydrogels, forming cellular networks. This suggests that cells were able to structurally reorganize the matrix, through enzymatic hydrolysis of PVGLIG residues, overcoming biophysical hydrogel resistance. As shown by gelatine-zymography, MSC presented higher activity of MMP-2 when cultured within alginate functionalized with MMP-sensitive peptide, suggesting that the cells proteolytic phenotype was modulated by the matrix composition. Additionally, PVGLIG/RGD-alginate hydrogels were clearly degraded in cell culture. Taken together, the results demonstrate that the co-incorporation of MMP-labile peptides in cell-adhesive RGD-alginate hydrogels improved their performance as ECM analogues, providing a more dynamic and physiological 3-D cellular microenvironment.


Biomaterials | 2002

Cellulose phosphates as biomaterials. In vivo biocompatibility studies.

J.C. Fricain; Pedro L. Granja; Mário A. Barbosa; B. De Jéso; N. Barthe; Charles Baquey

Femoral implantation of regenerated cellulose hydrogels revealed their biocompatibility, but a complete osseointegration could not be observed. Phosphorylation was therefore envisaged as the means to enhance cellulose bioactivity. In vitro studies showed that regenerated cellulose hydrogels promote bone cells attachment and proliferation but do not mineralize in acellular simulated physiological conditions. On the contrary, phosphorylated cellulose has shown an opposite behavior, by inducing the formation of a calcium phosphate layer in simulated physiological conditions, but behaving as a poor substrate for bone cells attachment and proliferation. In order to investigate the in vivo behavior of these materials, and assess the influence of mineralization induction ability vs. bone cells compatibility, unmodified and phosphorylated cellulose hydrogels were implanted in rabbits for a maximum period of 6 months and bone regeneration was investigated. Despite the difficulties arising from the retraction of cellulose hydrogels upon dehydration during the preparation of retrieved implants, histological observations showed no inflammatory response after implantation, with bone intra-spongious regeneration of cells and the integration of the unmodified as well as the phosphorylated cellulose implants. After a maximum implantation period of 6 months, histological observations, histomorphometry and the measurement of the amount of 45Ca incorporated in the surrounding tissue indicated a slightly better osseointegration of phosphorylated cellulose, although no significant differences between the two materials were found.

Collaboration


Dive into the Pedro L. Granja's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge