Pedro L. Silva
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro L. Silva.
Critical Care Medicine | 2008
José Henrique Leite-Júnior; Cristiane S. N. B. Garcia; Alba B. Souza-Fernandes; Pedro L. Silva; Debora S. Ornellas; Andréa P. Larangeira; Hugo C. Castro-Faria-Neto; Marcelo M. Morales; Elnara M. Negri; Vera Luiza Capelozzi; Walter A. Zin; Paolo Pelosi; Patricia T. Bozza; Patricia R.M. Rocco
Objective:Corticosteroids have been proposed to be effective in modulating the inflammatory response and pulmonary tissue remodeling in acute lung injury (ALI). We hypothesized that steroid treatment might act differently in models of pulmonary (p) or extrapulmonary (exp) ALI with similar mechanical compromise. Design:Prospective, randomized, controlled experimental study. Setting:University research laboratory. Subjects:One hundred twenty-eight BALB/c mice (20–25 g). Interventions:Mice were divided into six groups. In control animals sterile saline solution was intratracheally (0.05 mL, Cp) or intraperitoneally (0.5 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (10 &mgr;g, ALIp) or intraperitoneally (125 &mgr;g, ALIexp). Six hours after lipopolysaccharide administration, ALIp and ALIexp animals were further randomized into subgroups receiving saline (0.1 mL intravenously) or methylprednisolone (2 mg/kg intravenously, Mp and Mexp, respectively). Measurements and Main Results:At 24 hrs, lung static elastance, resistive and viscoelastic pressures, lung morphometry, and collagen fiber content were similar in both ALI groups. KC, interleukin-6, and transforming growth factor (TGF)-&bgr; levels in bronchoalveolar lavage fluid, as well as tumor necrosis factor (TNF)-&agr;, migration inhibitory factor (MIF), interferon (IFN)-&ggr;, TGF-&bgr;1 and TGF-&bgr;2 messenger RNA expression in lung tissue were higher in ALIp than in ALIexp animals. Methylprednisolone attenuated mechanical and morphometric changes, cytokine levels, and TNF-&agr;, MIF, IFN&ggr;, and TGF-&bgr;2 messenger RNA expression only in ALIp animals, but prevented any changes in collagen fiber content in both ALI groups. Conclusions:Methylprednisolone is effective to inhibit fibrogenesis independent of the etiology of ALI, but its ability to attenuate inflammatory responses and lung mechanical changes varies according to the cause of ALI.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2008
Patrícia Angeli; Carla M. Prado; Debora G. Xisto; Pedro L. Silva; Caroline P. Pássaro; Hugo D. Nakazato; Edna A. Leick-Maldonado; Milton A. Martins; Patricia R.M. Rocco; Iolanda de Fátima Lopes Calvo Tibério
The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by N(omega)-nitro-L-arginine methyl ester (L-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1 approximately 5 mg/ml for 4 wk) and treated or not with L-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF(2alpha) expression in the alveolar septa compared with controls (P<0.05). L-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses (P<0.01), nNOS- and iNOS-positive cells, elastic fiber content (P<0.001), and isoprostane-8-PGF(2alpha) in the alveolar septa (P<0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.
Critical Care | 2010
Pedro L. Silva; Fernanda F. Cruz; Livia Fujisaki; Gisele Pinto de Oliveira; Cynthia S. Samary; Debora S. Ornellas; Tatiana Maron-Gutierrez; Nazareth N. Rocha; Regina Coeli dos Santos Goldenberg; Cristiane Snb Garcia; Marcelo M. Morales; Vera Luiza Capelozzi; Marcelo Gama de Abreu; Paolo Pelosi; Patricia R.M. Rocco
IntroductionRecruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis.MethodsALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)≈70 mmHg; 2) normovolemia (MAP≈100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP≈130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H2O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est,L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1β, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed.ResultsWe observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est,L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses.ConclusionsVolemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo- and normovolemia.
Critical Care Medicine | 2013
Pedro L. Silva; Lillian Moraes; Raquel S. Santos; Cynthia S. Samary; Maíra Ramos; Cintia L. Santos; Marcelo M. Morales; Vera Luiza Capelozzi; Cristiane S. N. B. Garcia; Marcelo Gama de Abreu; Paolo Pelosi; John J. Marini; Patricia R.M. Rocco
Objective:To investigate the effects of the rate of increase in airway pressure and duration of lung recruitment maneuvers in experimental pulmonary and extrapulmonary acute lung injury. Design:Prospective, randomized, controlled experimental study. Settings:University research laboratory. Subjects:Fifty adult male Wistar rats. Interventions:Acute lung injury was induced by Escherichia coli lipopolysaccharide either intratracheally (pulmonary acute lung injury) or intraperitoneally (extrapulmonary acute lung injury). After 24 hours, animals were assigned to one of three different recruitment maneuvers, targeted to maximal airway pressure of 30 cm H2O: 1) continuous positive airway pressure for 30 seconds (CPAP-30); 2) stepwise airway pressure increase (5 cm H2O/step, 8.5 s at each step) over 51 seconds (STEP-51) to achieve a pressure-time product similar to that of CPAP-30; and 3) stepwise airway pressure increase (5 cm H2O/step, 5 s at each step) over 30 seconds with maximum pressure sustained for a further 30 seconds (STEP-30/30). Measurements and Main Results:All recruitment maneuvers reduced static lung elastance independent of acute lung injury etiology. In pulmonary acute lung injury, CPAP-30 yielded lower surfactant protein-B and higher type III procollagen expressions compared with STEP-30/30. In extrapulmonary acute lung injury, CPAP-30 and STEP-30/30 increased vascular cell adhesion molecule-1 expression, but the type of recruitment maneuver did not influence messenger ribonucleic acid expression of receptor for advanced glycation end products, surfactant protein-B, type III procollagen, and pro-caspase 3. Conclusions:CPAP-30 worsened markers of potential epithelial cell damage in pulmonary acute lung injury, whereas both CPAP-30 and STEP-30/30 yielded endothelial injury in extrapulmonary acute lung injury. In both acute lung injury groups, recruitment maneuvers improved respiratory mechanics, but stepwise recruitment maneuver without sustained airway pressure appeared to associate with less biological impact on lungs.
Critical Care Medicine | 2011
Pedro L. Silva; Lillian Moraes; Raquel S. Santos; Cynthia S. Samary; Debora S. Ornellas; Tatiana Maron-Gutierrez; Marcelo M. Morales; Felipe Saddy; Vera Luiza Capelozzi; Paolo Pelosi; John J. Marini; Marcelo Gama de Abreu; Patricia R.M. Rocco
Objective:To investigate the effects of the rate of airway pressure increase and duration of recruitment maneuvers on lung function and activation of inflammation, fibrogenesis, and apoptosis in experimental acute lung injury. Design:Prospective, randomized, controlled experimental study. Setting:University research laboratory. Subjects:Thirty-five Wistar rats submitted to acute lung injury induced by cecal ligation and puncture. Interventions:After 48 hrs, animals were randomly distributed into five groups (seven animals each): 1) nonrecruited (NR); 2) recruitment maneuvers (RMs) with continuous positive airway pressure (CPAP) for 15 secs (CPAP15); 3) RMs with CPAP for 30 secs (CPAP30); 4) RMs with stepwise increase in airway pressure (STEP) to targeted maximum within 15 secs (STEP15); and 5) RMs with STEP within 30 secs (STEP30). To perform STEP RMs, the ventilator was switched to a CPAP mode and positive end-expiratory pressure level was increased stepwise. At each step, airway pressure was held constant. RMs were targeted to 30 cm H2O. Animals were then ventilated for 1 hr with tidal volume of 6 mL/kg and positive end-expiratory pressure of 5 cm H2O. Measurements and Main Results:Blood gases, lung mechanics, histology (light and electronic microscopy), interleukin-6, caspase 3, and type 3 procollagen mRNA expressions in lung tissue. All RMs improved oxygenation and lung static elastance and reduced alveolar collapse compared to NR. STEP30 resulted in optimal performance, with: 1) improved lung static elastance vs. NR, CPAP15, and STEP15; 2) reduced alveolar-capillary membrane detachment and type 2 epithelial and endothelial cell injury scores vs. CPAP15 (p < .05); and 3) reduced gene expression of interleukin-6, type 3 procollagen, and caspase 3 in lung tissue vs. other RMs. Conclusions:Longer-duration RMs with slower airway pressure increase efficiently improved lung function, while minimizing the biological impact on lungs.
Critical Care Medicine | 2009
Caroline P. Pássaro; Pedro L. Silva; Andréia F. Rzezinski; Simone Abrantes; Viviane R. Santiago; Liliane M. Nardelli; Raquel S. Santos; Carolina M.L. Barbosa; Marcelo M. Morales; Walter A. Zin; Marcelo B. P. Amato; Vera Luiza Capelozzi; Paolo Pelosi; Patricia R.M. Rocco
Objective:To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Design:Prospective, randomized, and controlled experimental study. Setting:University research laboratory. Subjects:Wistar rats were randomly assigned to control (C) [saline (0.1 mL), intraperitoneally] and ALI [paraquat (15 mg/kg), intraperitoneally] groups. Measurements and Main Results:After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H2O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (&Dgr;P2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and &Dgr;P2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. Conclusions:In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and &Dgr;P2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful.
Anesthesiology | 2015
Cynthia S. Samary; Raquel S. Santos; Cintia L. Santos; Nathane S. Felix; Maira Bentes; Thiago Barboza; Vera Luiza Capelozzi; Marcelo M. Morales; Cristiane S. N. B. Garcia; Sergio Augusto Lopes de Souza; John J. Marini; Marcelo Gama de Abreu; Pedro L. Silva; Paolo Pelosi; Patricia R.M. Rocco
Background:Ventilator-induced lung injury has been attributed to the interaction of several factors: tidal volume (VT), positive end-expiratory pressure (PEEP), transpulmonary driving pressure (difference between transpulmonary pressure at end-inspiration and end-expiration, &Dgr;P,L), and respiratory system plateau pressure (Pplat,rs). Methods:Forty-eight Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, animals were randomized into combinations of VT and PEEP, yielding three different &Dgr;P,L levels: &Dgr;P,LLOW (VT = 6 ml/kg, PEEP = 3 cm H2O); &Dgr;P,LMEAN (VT = 13 ml/kg, PEEP = 3 cm H2O or VT = 6 ml/kg, PEEP = 9.5 cm H2O); and &Dgr;P,LHIGH (VT = 22 ml/kg, PEEP = 3 cm H2O or VT = 6 ml/kg, PEEP = 11 cm H2O). In other groups, at low VT, PEEP was adjusted to obtain a Pplat,rs similar to that achieved with &Dgr;P,LMEAN and &Dgr;P,LHIGH at high VT. Results:At &Dgr;P,LLOW, expressions of interleukin (IL)-6, receptor for advanced glycation end products (RAGE), and amphiregulin were reduced, despite morphometric evidence of alveolar collapse. At &Dgr;P,LHIGH (VT = 6 ml/kg and PEEP = 11 cm H2O), lungs were fully open and IL-6 and RAGE were reduced compared with &Dgr;P,LMEAN (27.4 ± 12.9 vs. 41.6 ± 14.1 and 0.6 ± 0.2 vs. 1.4 ± 0.3, respectively), despite increased hyperinflation and amphiregulin expression. At &Dgr;P,LMEAN (VT = 6 ml/kg and PEEP = 9.5 cm H2O), when PEEP was not high enough to keep lungs open, IL-6, RAGE, and amphiregulin expression increased compared with &Dgr;P,LLOW (41.6 ± 14.1 vs. 9.0 ± 9.8, 1.4 ± 0.3 vs. 0.6 ± 0.2, and 6.7 ± 0.8 vs. 2.2 ± 1.0, respectively). At Pplat,rs similar to that achieved with &Dgr;P,LMEAN and &Dgr;P,LHIGH, higher VT and lower PEEP reduced IL-6 and RAGE expression. Conclusion:In the acute respiratory distress syndrome model used in this experiment, two strategies minimized ventilator-induced lung injury: (1) low VT and PEEP, yielding low &Dgr;P,L and Pplat,rs; and (2) low VT associated with a PEEP level sufficient to keep the lungs open.
Critical Care | 2014
Christopher Uhlig; Pedro L. Silva; Stefanie Deckert; Jochen Schmitt; Marcelo Gama de Abreu
IntroductionIn patients with acute respiratory distress syndrome (ARDS) fluid therapy might be necessary. The aim of this systematic review and meta-analysis is to determine the effects of colloid therapy compared to crystalloids on mortality and oxygenation in adults with ARDS.MethodsRandomized controlled trials (RCTs) were identified through a systematic literature search of MEDLINE, EMBASE, CENTRAL and LILACS. Articles published up to 15th February 2013 were independently screened, abstracted, and assessed (Cochrane Risk of Bias Tool) to provide evidence-based therapy recommendations. RCTs were eligible if they compared colloid versus crystalloid therapy on lung function, inflammation, damage or mortality in adults with ARDS. Primary outcome parameters were respiratory mechanics, gas exchange lung inflammation and damage as well as hospital mortality. Kidney function, need for renal replacement therapy, hemodynamic stabilization and intensive care unit (ICU) length of stay served as secondary outcomes.ResultsA total of 3 RCTs out of 4130 potential trials found in the databases were selected for qualitative and quantitative analysis totaling 206 patients who received either albumin or saline. Overall risk of bias was unclear to high in the identified trials. Calculated pooled risk of death was not statistically significant (albumin 34 of 100 (34.0%) versus 40 of 104 (38.5%), relative risk (RR) = 0.89, 95% confidence interval (CI) 0.62 to 1.28, P = 0.539). Weighted mean difference (WMD) in PaO2/FiO2 (mmHg) improved in the first 48 hours (WMD = 62, 95% CI 47 to 77, P <0.001, I2 = 0%) after therapy start and remained stable after 7 days (WMD = 20, 95% CI 4 to 36, P = 0.017, I2 = 0%).ConclusionsThere is a high need for RCTs investigating the effects of colloids in ARDS patients. Based on the findings of this review, colloid therapy with albumin improved oxygenation but did not affect mortality.
Respiratory Physiology & Neurobiology | 2011
Simone A Saraiva; Adriana L. Silva; Debora G. Xisto; Soraia C. Abreu; Johnatas D. Silva; Pedro L. Silva; Tatiana P.F. Teixeira; Edwin Roger Parra; Ana Laura N. Carvalho; Raquel Annoni; Thais Mauad; Vera Luiza Capelozzi; Patrícia M.R. e Silva; Marco A. Martins; Patricia R.M. Rocco
The impact of obesity on the inflammatory process has been described in asthma, however little is known about the influence of diet-induced obesity on lung remodeling. For this purpose, 56 recently weaned A/J mice were randomly divided into 2 groups. In the C group, mice were fed a standard chow diet, while OB animals received isocaloric high-fat diet to reach 1.5 of the mean body weight of C. After 12 weeks, each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, and the number of eosinophils in bronchoalveolar lavage fluid were higher in OB-OVA than C-OVA. In conclusion, diet-induced obesity enhanced lung remodeling resulting in higher airway responsiveness in the present experimental chronic allergic asthma.
Respiratory Physiology & Neurobiology | 2010
Mônica C.M. Chao; Cristiane S. N. B. Garcia; Mariana G. Oliveira; Raquel S. Santos; Isabela H. Lucas; Pedro L. Silva; Adriana Vieira-Abreu; Hugo C. Castro-Faria-Neto; Edwin Roger Parra-Cuentas; Vera Luiza Capelozzi; Paolo Pelosi; Patricia R.M. Rocco
We tested the hypothesis that at the early phase of acute lung injury (ALI) the degree of endothelium injury may predict lung parenchyma remodelling. For this purpose, two models of extrapulmonary ALI induced by Escherichia coli lipopolysaccharide (ALI-LPS) or cecal ligation and puncture (ALI-CLP) were developed in mice. At day 1, these models had similar degrees of lung mechanical compromise, epithelial damage, and intraperitoneal inflammation, but endothelial lesion was greater in ALI-CLP. A time course analysis revealed, at day 7: ALI-CLP had higher degrees of epithelial lesion, denudation of basement membrane, endothelial damage, elastic and collagen fibre content, neutrophils in bronchoalveolar lavage fluid (BALF), peritoneal fluid and blood, levels of interleukin-6, KC (murine analogue of IL-8), and transforming growth factor-β in BALF. Conversely, the number of lung apoptotic cells was similar in both groups. In conclusion, the intensity of fibroelastogenesis was affected by endothelium injury in addition to the maintenance of epithelial damage and intraperitoneal inflammation.