Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro Pais is active.

Publication


Featured researches published by Pedro Pais.


Cellular Microbiology | 2017

The multidrug resistance transporters CgTpo1_1 and CgTpo1_2 play a role in virulence and biofilm formation in the human pathogen Candida glabrata

Rui Galhano dos Santos; Catarina Costa; Dalila Mil-Homens; Daniela Romão; Carla C. C. R. de Carvalho; Pedro Pais; Nuno P. Mira; Arsenio M. Fialho; Miguel C. Teixeira

The mechanisms of persistence and virulence associated with Candida glabrata infections are poorly understood, limiting the ability to fight this fungal pathogen.


Molecular & Cellular Proteomics | 2016

Membrane Proteome-Wide Response to the Antifungal Drug Clotrimazole in Candida glabrata: Role of the Transcription Factor CgPdr1 and the Drug:H+ Antiporters CgTpo1_1 and CgTpo1_2

Pedro Pais; Catarina Costa; Carla Pires; Kiminori Shimizu; Hiroji Chibana; Miguel C. Teixeira

Azoles are widely used antifungal drugs. This family of compounds includes triazoles, mostly used in the treatment of systemic infections, and imidazoles, such as clotrimazole, often used in the case of superficial infections. Candida glabrata is the second most common cause of candidemia worldwide and presents higher levels of intrinsic azole resistance when compared with Candida albicans, thus being an interesting subject for the study of azole resistance mechanisms in fungal pathogens. Since resistance often relies on the action of membrane transporters, including drug efflux pumps from the ATP-binding cassette family or from the Drug:H+ antiporter (DHA)1 family, an iTRAQ-based membrane proteomics analysis was performed to identify all the membrane-associated proteins whose abundance changes in C. glabrata cells exposed to the azole drug clotrimazole. Proteins found to have significant expression changes in this context were clustered into functional groups, namely: glucose metabolism, oxidative phosphorylation, mitochondrial import, ribosome components and translation machinery, lipid metabolism, multidrug resistance transporters, cell wall assembly, and stress response, comprising a total of 37 proteins. Among these, the DHA transporter CgTpo1_2 (ORF CAGL0E03674g) was identified as overexpressed in the C. glabrata membrane in response to clotrimazole. Functional characterization of this putative drug:H+ antiporter, and of its homolog CgTpo1_1 (ORF CAGL0G03927g), allowed the identification of these proteins as localized to the plasma membrane and conferring azole drug resistance in this fungal pathogen by actively extruding the drug to the external medium. The cell wall protein CgGas1 was also shown to confer azole drug resistance through cell wall remodeling. Finally, the transcription factor CgPdr1 in the clotrimazole response was observed to control the expression of 20 of the identified proteins, thus highlighting the existence of additional unforeseen targets of this transcription factor, recognized as a major regulator of azole drug resistance in clinical isolates.


PLOS ONE | 2015

New Mechanisms of Flucytosine Resistance in C. glabrata Unveiled by a Chemogenomics Analysis in S. cerevisiae.

Catarina Costa; Andreia Ponte; Pedro Pais; Rui Galhano dos Santos; Mafalda Cavalheiro; Takashi Yaguchi; Hiroji Chibana; Miguel C. Teixeira

5-Flucytosine is currently used as an antifungal drug in combination therapy, but fungal pathogens are rapidly able to develop resistance against this drug, compromising its therapeutic action. The understanding of the underlying resistance mechanisms is crucial to deal with this problem. In this work, the S. cerevisiae deletion mutant collection was screened for increased resistance to flucytosine. Through this chemogenomics analysis, 183 genes were found to confer resistance to this antifungal agent. Consistent with its known effect in DNA, RNA and protein synthesis, the most significant Gene Ontology terms over-represented in the list of 5-flucytosine resistance determinants are related to DNA repair, RNA and protein metabolism. Additional functional classes include carbohydrate and nitrogen—particularly arginine—metabolism, lipid metabolism and cell wall remodeling. Based on the results obtained for S. cerevisiae as a model system, further studies were conducted in the pathogenic yeast Candida glabrata. Arginine supplementation was found to relieve the inhibitory effect exerted by 5-flucytosine in C. glabrata. Lyticase susceptibility was found to increase within the first 30min of 5-flucytosine exposure, suggesting this antifungal drug to act as a cell wall damaging agent. Upon exponential growth resumption in the presence of 5-flucytosine, the cell wall exhibited higher resistance to lyticase, suggesting that cell wall remodeling occurs in response to 5-flucytosine. Additionally, the aquaglyceroporin encoding genes CgFPS1 and CgFPS2, from C. glabrata, were identified as determinants of 5-flucytosine resistance. CgFPS1 and CgFPS2 were found to mediate 5-flucytosine resistance, by decreasing 5-flucytosine accumulation in C. glabrata cells.


Nucleic Acids Research | 2017

The PathoYeastract database: an information system for the analysis of gene and genomic transcription regulation in pathogenic yeasts

Pedro T. Monteiro; Pedro Pais; Catarina Costa; Sauvagya Manna; Isabel Sá-Correia; Miguel C. Teixeira

We present the PATHOgenic YEAst Search for Transcriptional Regulators And Consensus Tracking (PathoYeastract - http://pathoyeastract.org) database, a tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in the pathogenic yeasts Candida albicans and C. glabrata. Upon data retrieval from hundreds of publications, followed by curation, the database currently includes 28 000 unique documented regulatory associations between transcription factors (TF) and target genes and 107 DNA binding sites, considering 134 TFs in both species. Following the structure used for the YEASTRACT database, PathoYeastract makes available bioinformatics tools that enable the user to exploit the existing information to predict the TFs involved in the regulation of a gene or genome-wide transcriptional response, while ranking those TFs in order of their relative importance. Each search can be filtered based on the selection of specific environmental conditions, experimental evidence or positive/negative regulatory effect. Promoter analysis tools and interactive visualization tools for the representation of TF regulatory networks are also provided. The PathoYeastract database further provides simple tools for the prediction of gene and genomic regulation based on orthologous regulatory associations described for other yeast species, a comparative genomics setup for the study of cross-species evolution of regulatory networks.


Nucleic Acids Research | 2018

YEASTRACT: an upgraded database for the analysis of transcription regulatory networks in Saccharomyces cerevisiae

Miguel C. Teixeira; Pedro T. Monteiro; Margarida Palma; Catarina Costa; Cláudia P. Godinho; Pedro Pais; Mafalda Cavalheiro; Miguel Antunes; Alexandre Lemos; Tiago Pedreira; Isabel Sá-Correia

Abstract The YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT—www.yeastract.com) information system has been, for 11 years, a key tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in Saccharomyces cerevisiae. Since its last update in June 2017, YEASTRACT includes approximately 163000 regulatory associations between transcription factors (TF) and target genes in S. cerevisiae, based on more than 1600 bibliographic references; it also includes 247 specific DNA binding consensus recognized by 113 TFs. This release of the YEASTRACT database provides new visualization tools to visualize each regulatory network in an interactive fashion, enabling the user to select and observe subsets of the network such as: (i) considering only DNA binding evidence or both DNA binding and expression evidence; (ii) considering only either positive or negative regulatory associations; or (iii) considering only one set of related environmental conditions. A further tool to observe TF regulons is also offered, enabling a clear-cut understanding of the exact meaning of the available data. We believe that with this new version, YEASTRACT will improve its role as an open web resource instrumental for Yeast Biologists and Systems Biology researchers.


Frontiers in Cellular and Infection Microbiology | 2016

Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison

Pedro Pais; Catarina Costa; Mafalda Cavalheiro; Daniela Romão; Miguel C. Teixeira

Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis. Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.


Frontiers in Cellular and Infection Microbiology | 2017

A New Determinant of Candida glabrata Virulence: The Acetate Exporter CgDtr1

Daniela Romão; Mafalda Cavalheiro; Dalila Mil-Homens; Rui Galhano dos Santos; Pedro Pais; Catarina Costa; Azusa Takahashi-Nakaguchi; Arsenio M. Fialho; Hiroji Chibana; Miguel C. Teixeira

Persistence and virulence of Candida glabrata infections are multifactorial phenomena, whose understanding is crucial to design more suitable therapeutic strategies. In this study, the putative multidrug transporter CgDtr1, encoded by ORF CAGL0M06281g, is identified as a determinant of C. glabrata virulence in the infection model Galleria mellonella. CgDTR1 deletion is shown to decrease the ability to kill G. mellonella larvae by decreasing C. glabrata ability to proliferate in G. mellonella hemolymph, and to tolerate the action of hemocytes. The possible role of CgDtr1 in the resistance to several stress factors that underlie death induced by phagocytosis was assessed. CgDTR1 was found to confer resistance to oxidative and acetic acid stress. Consistently, CgDtr1 was found to be a plasma membrane acetic acid exporter, relieving the stress induced upon C. glabrata cells within hemocytes, and thus enabling increased proliferation and virulence against G. mellonella larvae.


Frontiers in Microbiology | 2016

Membrane Proteomics Analysis of the Candida glabrata Response to 5-Flucytosine: Unveiling the Role and Regulation of the Drug Efflux Transporters CgFlr1 and CgFlr2

Pedro Pais; Carla Pires; Catarina Costa; Michiyo Okamoto; Hiroji Chibana; Miguel C. Teixeira

Resistance to 5-flucytosine (5-FC), used as an antifungal drug in combination therapy, compromises its therapeutic action. In this work, the response of the human pathogen Candida glabrata to 5-FC was evaluated at the membrane proteome level, using an iTRAQ-based approach. A total of 32 proteins were found to display significant expression changes in the membrane fraction of cells upon exposure to 5-FC, 50% of which under the control of CgPdr1, the major regulator of azole drug resistance. These proteins cluster into functional groups associated to cell wall assembly, lipid metabolism, amino acid/nucleotide metabolism, ribosome components and translation machinery, mitochondrial function, glucose metabolism, and multidrug resistance transport. Given the obtained indications, the function of the drug:H+ antiporters CgFlr1 (ORF CAGL0H06017g) and CgFlr2 (ORF CAGL0H06039g) was evaluated. The expression of both proteins, localized to the plasma membrane, was found to confer flucytosine resistance. CgFlr2 further confers azole drug resistance. The deletion of CgFLR1 or CgFLR2 was seen to increase the intracellular accumulation of 5-FC, or 5-FC and clotrimazole, suggesting that these transporters play direct roles in drug extrusion. The expression of CgFLR1 and CgFLR2 was found to be controlled by the transcription factors CgPdr1 and CgYap1, major regulator of oxidative stress resistance.


Genes | 2018

Host-Pathogen Interactions Mediated by MDR Transporters in Fungi: As Pleiotropic as it Gets!

Mafalda Cavalheiro; Pedro Pais; Mónica Galocha; Miguel C. Teixeira

Fungal infections caused by Candida, Aspergillus, and Cryptococcus species are an increasing problem worldwide, associated with very high mortality rates. The successful prevalence of these human pathogens is due to their ability to thrive in stressful host niche colonization sites, to tolerate host immune system-induced stress, and to resist antifungal drugs. This review focuses on the key role played by multidrug resistance (MDR) transporters, belonging to the ATP-binding cassette (ABC), and the major facilitator superfamilies (MFS), in mediating fungal resistance to pathogenesis-related stresses. These clearly include the extrusion of antifungal drugs, with C. albicans CDR1 and MDR1 genes, and corresponding homologs in other fungal pathogens, playing a key role in this phenomenon. More recently, however, clues on the transcriptional regulation and physiological roles of MDR transporters, including the transport of lipids, ions, and small metabolites, have emerged, linking these transporters to important pathogenesis features, such as resistance to host niche environments, biofilm formation, immune system evasion, and virulence. The wider view of the activity of MDR transporters provided in this review highlights their relevance beyond drug resistance and the need to develop therapeutic strategies that successfully face the challenges posed by the pleiotropic nature of these transporters.


Archive | 2015

Multidrug resistance in pathogenic yeasts: emphasis on the role of ABC and MFS multidrug transporters

Catarina Costa; Pedro Pais; Miguel C. Teixeira

Collaboration


Dive into the Pedro Pais's collaboration.

Top Co-Authors

Avatar

Miguel C. Teixeira

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Catarina Costa

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Mafalda Cavalheiro

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arsenio M. Fialho

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Dalila Mil-Homens

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Daniela Romão

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Pires

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Isabel Sá-Correia

Instituto Superior Técnico

View shared research outputs
Researchain Logo
Decentralizing Knowledge