Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro R. Frade is active.

Publication


Featured researches published by Pedro R. Frade.


The ISME Journal | 2016

The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance

Bettina Glasl; Gerhard J. Herndl; Pedro R. Frade

Microbes are well-recognized members of the coral holobiont. However, little is known about the short-term dynamics of mucus-associated microbial communities under natural conditions and after disturbances, and how these dynamics relate to the host’s health. Here we examined the natural variability of prokaryotic communities (based on 16S ribosomal RNA gene amplicon sequencing) associating with the surface mucus layer (SML) of Porites astreoides, a species exhibiting cyclical mucus aging and shedding. Shifts in the prokaryotic community composition during mucus aging led to the prevalence of opportunistic and potentially pathogenic bacteria (Verrucomicrobiaceae and Vibrionaceae) in aged mucus and to a twofold increase in prokaryotic abundance. After the release of aged mucus sheets, the community reverted to its original state, dominated by Endozoicimonaceae and Oxalobacteraceae. Furthermore, we followed the fate of the coral holobiont upon depletion of its natural mucus microbiome through antibiotics treatment. After re-introduction to the reef, healthy-looking microbe-depleted corals started exhibiting clear signs of bleaching and necrosis. Recovery versus mortality of the P. astreoides holobiont was related to the degree of change in abundance distribution of the mucus microbiome. We conclude that the natural prokaryotic community inhabiting the coral SML contributes to coral health and that cyclical mucus shedding has a key role in coral microbiome dynamics.


Journal of Chemical Ecology | 2008

A Sterol-Like Odorant in the Urine of Mozambique Tilapia Males Likely Signals Social Dominance to Females

Eduardo N. Barata; Jared M. Fine; Peter C. Hubbard; Olinda Almeida; Pedro R. Frade; Peter W. Sorensen; Adelino V. M. Canario

Many species of freshwater fish with relatively simple mating strategies release hormonally derived sex pheromones in urine. However, it is not known whether species with more complex reproductive strategies use specialized urinary chemical signals. We addressed this by using the Mozambique tilapia (Oreochromis mossambicus Peters 1852), a lek-breeding species in which males establish dominance hierarchies and visiting females mate preferentially with territorial/dominant males. We measured urination frequency of territorial males in social isolation and in the presence of females that were either ready to spawn or had finished spawning. In groups of fish, we monitored the volume of urine stored in subordinate and dominant males to determine if urine volume and olfactory potency (by recording electro-olfactograms, EOG, in females) are related to the male’s social rank. Dominant, territorial males stored more urine than subordinates and released it in short pulses, the frequency of which increased in the presence of females ready to spawn but not in the presence of post-spawn females. Urine from subordinate and dominant males was fractionated by liquid chromatography and fractions tested for olfactory potency by using the EOG, with the most potent fraction analyzed by mass spectrometry (MS). The olfactory system of females was sensitive to a urinary compound that was more abundant in the urine of dominant males than in that of subordinates. MS analysis suggested the compound is a sulfated aminosterol-like compound with a formula of C29H40N2O10S. Therefore, we suggest that dominant/territorial tilapia males dramatically increase urination frequency in the presence of females ready to spawn and that the urinary odorant acts as a pheromonal signal of dominance, thereby influencing female spawning.


Scientific Reports | 2015

Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community

Pim Bongaerts; Pedro R. Frade; Kyra B. Hay; Norbert Englebert; Kelly R. W. Latijnhouwers; R. P. M. Bak; Mark J. A. Vermeij; Ove Hoegh-Guldberg

The composition, ecology and environmental conditions of mesophotic coral ecosystems near the lower limits of their bathymetric distributions remain poorly understood. Here we provide the first in-depth assessment of a lower mesophotic coral community (60–100 m) in the Southern Caribbean through visual submersible surveys, genotyping of coral host-endosymbiont assemblages, temperature monitoring and a growth experiment. The lower mesophotic zone harbored a specialized coral community consisting of predominantly Agaricia grahamae, Agaricia undata and a “deep-water” lineage of Madracis pharensis, with large colonies of these species observed close to their lower distribution limit of ~90 m depth. All three species associated with “deep-specialist” photosynthetic endosymbionts (Symbiodinium). Fragments of A. grahamae exhibited growth rates at 60 m similar to those observed for shallow Agaricia colonies (~2–3 cm yr−1), but showed bleaching and (partial) mortality when transplanted to 100 m. We propose that the strong reduction of temperature over depth (Δ5°C from 40 to 100 m depth) may play an important contributing role in determining lower depth limits of mesophotic coral communities in this region. Rather than a marginal extension of the reef slope, the lower mesophotic represents a specialized community, and as such warrants specific consideration from science and management.


Molecular Phylogenetics and Evolution | 2010

Semi-permeable species boundaries in the coral genus Madracis: Introgression in a brooding coral system

Pedro R. Frade; M.C. Reyes-Nivia; J. Faria; Jaap A. Kaandorp; P.C. Luttikhuizen; R. P. M. Bak

Introgressive hybridization is described in several phylogenetic studies of mass-spawning corals. However, the prevalence of this process among brooding coral species is unclear. We used a mitochondrial (mtDNA: nad5) and two nuclear (nDNA: ATPSα and SRP54) intron markers to explore species barriers in the coral genus Madracis and address the role of hybridization in brooding systems. Specimens of six Caribbean Madracis morphospecies were collected from 5 to 60 m depth at Buoy One, Curaçao, supplemented by samples from Aruba, Trinidad & Tobago and Bermuda. Polymerase chain reaction and denaturing gradient gel electrophoresis were coupled to detect distinct alleles within single colonies. The recurrent nDNA phylogenetic non-monophyly among taxa is only challenged by Madracis senaria, the single monophyletic species within the genus. nDNA AMOVAs indicated overall statistical divergence (0.1% significance level) among species but pairwise comparisons of genetic differentiation revealed some gene exchange between Madracis taxa. mtDNA sequences clustered in two main groups representing typical shallow and deep water Madracis species. Madracis pharensis shallow and deep colonies (with threshold at about 23-24 m) clustered in different mtDNA branches, together with their depth-sympatric congenerics. This divergence was repeated for the nDNA (ATPSα) suggestive of distinct M. pharensis depth populations. These matched the vertical distribution of the dinoflagellate symbionts hosted by M. pharensis, with Symbiodinium ITS2 type B7 in the shallows but type B15 in the deep habitats, suggesting symbiont-related disruptive selection. Recurrent non-monophyly of Madracis taxa and high levels of shared polymorphism reflected in ambiguous phylogenetic networks indicate that hybridization is likely to have played a role in the evolution of the genus. Using coalescent forward-in-time simulations, lineage sorting alone was rejected as an explanation to the SRP54 genetic variation contained in Madracis mirabilis and Madracis decactis (species with an old fossil record), showing that introgressive hybridization has taken place between these species, either directly or through the gene pool of other Madracis taxa. Madracis widespread non-monophyly and the absence of statistical divergence between some species suggest that introgressive hybridization plays an important role in the evolution of the genus. Different reproductive traits and symbiont signatures of taxa forming distinct genetic clusters also point to the same conclusion. We suggest that Madracis morphospecies remain recognizable because introgressive hybridization is non-pervasive and/or because disruptive selection is in action.


Royal Society Open Science | 2015

Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species.

Pim Bongaerts; Margaux Carmichael; Kyra B. Hay; Linda Tonk; Pedro R. Frade; Ove Hoegh-Guldberg

Bathymetric distributions of photosynthetic marine invertebrate species are relatively well studied, however the importance of symbiont zonation (i.e. hosting of distinct algal endosymbiont communities over depth) in determining these depth distributions still remains unclear. Here, we assess the prevalence of symbiont zonation in tropical scleractinian corals by genotyping the Symbiodinium of the 25 most common species over a large depth range (down to 60 m) on a Caribbean reef. Symbiont depth zonation was found to be common on a reef-wide scale (11 out of 25 coral species), and a dominant feature in species with the widest depth distributions. With regards to reproductive strategy, symbiont zonation was more common in broadcasting species, which also exhibited a higher level of polymorphism in the symbiont zonation (i.e. number of different Symbiodinium profiles involved). Species with symbiont zonation exhibited significantly broader depth distributions than those without, highlighting the role of symbiont zonation in shaping the vertical distributions of the coral host. Overall, the results demonstrate that coral reefs can consist of highly structured communities over depth when considering both the coral host and their obligate photosymbionts, which probably has strong implications for the extent of connectivity between shallow and mesophotic habitats.


Environmental Chemistry | 2016

Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus

Pedro R. Frade; V. Schwaninger; B. Glasl; Eva Sintes; Richard W. Hill; Rafel Simó; Gerhard J. Herndl

Environmental context Corals produce copious amounts of dimethylsulfoniopropionate (DMSP), a sulfur compound implicated in climate regulation. We studied DMSP concentrations inside corals and unveiled the linkage between DMSP availability and the abundance of DMSP-degrading bacterial groups inhabiting the corals’ surface. Our findings suggest that DMSP mediates the interplay between corals and microbes, highlighting the importance of sulfur compounds for microbial processes in corals and for the resilience of coral reef ecosystems. Abstract Corals produce copious amounts of dimethylsulfoniopropionate (DMSP), a sulfur compound thought to play a role in structuring coral-associated bacterial communities. We tested the hypothesis that a linkage exists between DMSP availability in coral tissues and the community dynamics of bacteria in coral surface mucus. We determined DMSP concentrations in three coral species (Meandrina meandrites, Porites astreoides and Siderastrea siderea) at two sampling depths (5 and 25m) and times of day (dawn and noon) at Curacao, Southern Caribbean. DMSP concentration (4–409nmolcm–2 coral surface) varied with host species-specific traits such as Symbiodinium cell abundance, but not with depth or time of sampling. Exposure of corals to air caused a doubling of their DMSP concentration. The phylogenetic affiliation of mucus-associated bacteria was examined by clone libraries targeting three main subclades of the bacterial DMSP demethylase gene (dmdA). dmdA gene abundance was determined by quantitative Polymerase Chain Reaction (qPCR) against a reference housekeeping gene (recA). Overall, a higher availability of DMSP corresponded to a lower relative abundance of the dmdA gene, but this pattern was not uniform across all host species or bacterial dmdA subclades, suggesting the existence of distinct DMSP microbial niches or varying dmdA DMSP affinities. This is the first study quantifying dmdA gene abundance in corals and linking related changes in the community dynamics of DMSP-degrading bacteria to DMSP availability. Our study suggests that DMSP mediates the regulation of microbes by the coral host and highlights the significance of sulfur compounds for microbial processes in coral reefs.


PLOS ONE | 2016

Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

Pedro R. Frade; Katharina Roll; Kristin Bergauer; Gerhard J. Herndl

Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.


PLOS ONE | 2013

Comparison between colony morphology and molecular phylogeny in the Caribbean scleractinian coral genus Madracis

Pedro R. Frade; R. P. M. Bak; Mark J. A. Vermeij; Jaap A. Kaandorp

A major challenge in coral biology is to find the most adequate and phylogenetically informative characters that allow for distinction of closely related coral species. Therefore, data on corallite morphology and genetic data are often combined to increase phylogenetic resolution. In this study, we address the question to which degree genetic data and quantitative information on overall coral colony morphologies identify similar groupings within closely related morphospecies of the Caribbean coral genus Madracis. Such comparison of phylogenies based on colony morphology and genetic data will also provide insight into the degree to which genotype and phenotype overlap. We have measured morphological features of three closely related Caribbean coral species of the genus Madracis (M. formosa, M. decactis and M. carmabi). Morphological differences were then compared with phylogenies of the same species based on two nuclear DNA markers, i.e. ATPSα and SRP54. Our analysis showed that phylogenetic trees based on (macroscopical) morphological properties and phylogenetic trees based on DNA markers ATPSα and SRP54 are partially similar indicating that morphological characteristics at the colony level provide another axis, in addition to commonly used features such as corallite morphology and ecological information, to delineate genetically different coral species. We discuss this new method that allows systematic quantitative comparison between morphological characteristics of entire colonies and genetic data.


Zootaxa | 2018

Morphological and genetic divergence between Mediterranean and Caribbean populations of Madracis pharensis (Heller 1868) (Scleractinia, Pocilloporidae): too much for one species?

Francesca Benzoni; Roberto Arrigoni; Michael L. Berumen; Marco Taviani; Pim Bongaerts; Pedro R. Frade

The colonial stony coral genus Madracis is cosmopolitan, lives in shallow and deep water habitats, and includes zooxanthellate, azooxanthellate and facultative symbiotic species. One of its species, Madracis pharensis, has been recorded from the Mediterranean and East Atlantic, where it forms small knobby and facultative zooxanthellate colonies (also named M. pharensis f. pharensis), and from the tropical Caribbean, where it also occurs in a massive and zooxanthellate form (named M. pharensis f. luciphila by some). These two forms have been previously found to host different Symbiodinium species. In this study, species boundaries and phylogenetic relationships between these two Madracis pharensis forms (from the Mediterranean Sea and the Caribbean), M. senaria, and the Indo-west Pacific M. kirbyi were analyzed through an integrated systematics approach, including corallite dimensions, micromorphology and two molecular markers (ITS and ATP8). Significant genetic and morphological differences were found between all the examined Madracis species, and between M. pharensis from the Mediterranean Sea and M. pharensis f. luciphila from the Caribbean in particular. Based on these results, the latter does not represent a zooxanthellate ecomorph of the former but a different species. Its identity remains to be ascertained and its relationship with the Caribbean M. decactis, with which it bears morphologic resemblance, must be investigated in further studies. Overall, the presence of cryptic Madracis species in the Easter and Central Atlantic Ocean remains to be evaluated.


Nature Communications | 2018

Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching

Pedro R. Frade; Pim Bongaerts; Norbert Englebert; Alice Rogers; Manuel González-Rivero; Ove Hoegh-Guldberg

Our rapidly warming climate is threatening coral reefs as thermal anomalies trigger mass coral bleaching events. Deep (or “mesophotic”) coral reefs are hypothesised to act as major ecological refuges from mass bleaching, but empirical assessments are limited. We evaluated the potential of mesophotic reefs within the Great Barrier Reef (GBR) and adjacent Coral Sea to act as thermal refuges by characterising long-term temperature conditions and assessing impacts during the 2016 mass bleaching event. We found that summer upwelling initially provided thermal relief at upper mesophotic depths (40 m), but then subsided resulting in anomalously warm temperatures even at depth. Bleaching impacts on the deep reefs were severe (40% bleached and 6% dead colonies at 40 m) but significantly lower than at shallower depths (60–69% bleached and 8–12% dead at 5-25 m). While we confirm that deep reefs can offer refuge from thermal stress, we highlight important caveats in terms of the transient nature of the protection and their limited ability to provide broad ecological refuge.It has been suggested that deep coral reefs offer a refuge against warming and mass bleaching. Here Frade et al. look at the 2016 bleaching event in the northern Great Barrier Reef and found that deep reefs initially acted as thermal refuges, though this effect lessened in the late summer months.

Collaboration


Dive into the Pedro R. Frade's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pim Bongaerts

California Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

R. P. M. Bak

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyra B. Hay

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge