Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro Romero is active.

Publication


Featured researches published by Pedro Romero.


FEBS Journal | 2005

Flexible nets. The roles of intrinsic disorder in protein interaction networks.

A. Keith Dunker; Marc S. Cortese; Pedro Romero; Lilia M. Iakoucheva; Vladimir N. Uversky

Proteins participate in complex sets of interactions that represent the mechanistic foundation for much of the physiology and function of the cell. These protein–protein interactions are organized into exquisitely complex networks. The architecture of protein–protein interaction networks was recently proposed to be scale‐free, with most of the proteins having only one or two connections but with relatively fewer ‘hubs’ possessing tens, hundreds or more links. The high level of hub connectivity must somehow be reflected in protein structure. What structural quality of hub proteins enables them to interact with large numbers of diverse targets? One possibility would be to employ binding regions that have the ability to bind multiple, structurally diverse partners. This trait can be imparted by the incorporation of intrinsic disorder in one or both partners. To illustrate the value of such contributions, this review examines the roles of intrinsic disorder in protein network architecture. We show that there are three general ways that intrinsic disorder can contribute: First, intrinsic disorder can serve as the structural basis for hub protein promiscuity; secondly, intrinsically disordered proteins can bind to structured hub proteins; and thirdly, intrinsic disorder can provide flexible linkers between functional domains with the linkers enabling mechanisms that facilitate binding diversity. An important research direction will be to determine what fraction of protein–protein interaction in regulatory networks relies on intrinsic disorder.


BMC Genomics | 2008

The unfoldomics decade: an update on intrinsically disordered proteins

A. Keith Dunker; Christopher J. Oldfield; Jingwei Meng; Pedro Romero; Jack Y. Yang; Jessica Walton Chen; Vladimir Vacic; Zoran Obradovic; Vladimir N. Uversky

BackgroundOur first predictor of protein disorder was published just over a decade ago in the Proceedings of the IEEE International Conference on Neural Networks (Romero P, Obradovic Z, Kissinger C, Villafranca JE, Dunker AK (1997) Identifying disordered regions in proteins from amino acid sequence. Proceedings of the IEEE International Conference on Neural Networks, 1: 90–95). By now more than twenty other laboratory groups have joined the efforts to improve the prediction of protein disorder. While the various prediction methodologies used for protein intrinsic disorder resemble those methodologies used for secondary structure prediction, the two types of structures are entirely different. For example, the two structural classes have very different dynamic properties, with the irregular secondary structure class being much less mobile than the disorder class. The prediction of secondary structure has been useful. On the other hand, the prediction of intrinsic disorder has been revolutionary, leading to major modifications of the more than 100 year-old views relating protein structure and function. Experimentalists have been providing evidence over many decades that some proteins lack fixed structure or are disordered (or unfolded) under physiological conditions. In addition, experimentalists are also showing that, for many proteins, their functions depend on the unstructured rather than structured state; such results are in marked contrast to the greater than hundred year old views such as the lock and key hypothesis. Despite extensive data on many important examples, including disease-associated proteins, the importance of disorder for protein function has been largely ignored. Indeed, to our knowledge, current biochemistry books dont present even one acknowledged example of a disorder-dependent function, even though some reports of disorder-dependent functions are more than 50 years old. The results from genome-wide predictions of intrinsic disorder and the results from other bioinformatics studies of intrinsic disorder are demanding attention for these proteins.ResultsDisorder prediction has been important for showing that the relatively few experimentally characterized examples are members of a very large collection of related disordered proteins that are wide-spread over all three domains of life. Many significant biological functions are now known to depend directly on, or are importantly associated with, the unfolded or partially folded state. Here our goal is to review the key discoveries and to weave these discoveries together to support novel approaches for understanding sequence-function relationships.ConclusionIntrinsically disordered protein is common across the three domains of life, but especially common among the eukaryotic proteomes. Signaling sequences and sites of posttranslational modifications are frequently, or very likely most often, located within regions of intrinsic disorder. Disorder-to-order transitions are coupled with the adoption of different structures with different partners. Also, the flexibility of intrinsic disorder helps different disordered regions to bind to a common binding site on a common partner. Such capacity for binding diversity plays important roles in both protein-protein interaction networks and likely also in gene regulation networks. Such disorder-based signaling is further modulated in multicellular eukaryotes by alternative splicing, for which such splicing events map to regions of disorder much more often than to regions of structure. Associating alternative splicing with disorder rather than structure alleviates theoretical and experimentally observed problems associated with the folding of different length, isomeric amino acid sequences. The combination of disorder and alternative splicing is proposed to provide a mechanism for easily trying out different signaling pathways, thereby providing the mechanism for generating signaling diversity and enabling the evolution of cell differentiation and multicellularity. Finally, several recent small molecules of interest as potential drugs have been shown to act by blocking protein-protein interactions based on intrinsic disorder of one of the partners. Study of these examples has led to a new approach for drug discovery, and bioinformatics analysis of the human proteome suggests that various disease-associated proteins are very rich in such disorder-based drug discovery targets.


Nucleic Acids Research | 2012

D2P2: database of disordered protein predictions

Matt E. Oates; Pedro Romero; Takashi Ishida; Mohamed F. Ghalwash; Marcin J. Mizianty; Bin Xue; Zsuzsanna Dosztányi; Vladimir N. Uversky; Zoran Obradovic; Lukasz Kurgan; A. Keith Dunker; Julian Gough

We present the Database of Disordered Protein Prediction (D2P2), available at http://d2p2.pro (including website source code). A battery of disorder predictors and their variants, VL-XT, VSL2b, PrDOS, PV2, Espritz and IUPred, were run on all protein sequences from 1765 complete proteomes (to be updated as more genomes are completed). Integrated with these results are all of the predicted (mostly structured) SCOP domains using the SUPERFAMILY predictor. These disorder/structure annotations together enable comparison of the disorder predictors with each other and examination of the overlap between disordered predictions and SCOP domains on a large scale. D2P2 will increase our understanding of the interplay between disorder and structure, the genomic distribution of disorder, and its evolutionary history. The parsed data are made available in a unified format for download as flat files or SQL tables either by genome, by predictor, or for the complete set. An interactive website provides a graphical view of each protein annotated with the SCOP domains and disordered regions from all predictors overlaid (or shown as a consensus). There are statistics and tools for browsing and comparing genomes and their disorder within the context of their position on the tree of life.


Applied Bioinformatics | 2004

Natively disordered proteins: functions and predictions.

Pedro Romero; Zoran Obradovic; A. Keith Dunker

Proteins can exist in at least three forms: the ordered form (solid-like), the partially folded form (collapsed, molten globule-like or liquid-like) and the extended form (extended, random coil-like or gas-like). The protein trinity hypothesis has two components: (i) a given native protein can be in any one of the three forms, depending on the sequence and the environment; and (ii) function can arise from any one of the three forms or from transitions between them. In this study, bioinformatics and data mining were used to investigate intrinsic disorder in proteins and develop neural network-based predictors of natural disordered regions (PONDR) that can discriminate between ordered and disordered residues with up to 84% accuracy. Predictions of intrinsic disorder indicate that the three kingdoms follow the disorder ranking eubacteria < archaebacteria ≪ eukaryotes, with approximately half of eukaryotic proteins predicted to contain substantial regions of intrinsic disorder. Many of the known disordered regions are involved in signalling, regulation or control. Involvement of highly flexible or disordered regions in signalling is logical: a flexible sensor more readily undergoes conformational change in response to environmental perturbations than does a rigid one. Thus, the increased disorder in the eukaryotes is likely the direct result of an increased need for signalling and regulation in nucleated organisms. PONDR can also be used to detect molecular recognition elements that are disordered in the unbound state and become structured when bound to a biologically meaningful partner. Application of disorder predictions to cell-signalling, cancer-associated and control protein databases supports the widespread occurrence of protein disorder in these processes.


Journal of Virology | 2009

Overlapping Genes Produce Proteins with Unusual Sequence Properties and Offer Insight into De Novo Protein Creation

Corinne Rancurel; Mahvash Khosravi; A. Keith Dunker; Pedro Romero; David Karlin

ABSTRACT It is widely assumed that new proteins are created by duplication, fusion, or fission of existing coding sequences. Another mechanism of protein birth is provided by overlapping genes. They are created de novo by mutations within a coding sequence that lead to the expression of a novel protein in another reading frame, a process called “overprinting.” To investigate this mechanism, we have analyzed the sequences of the protein products of manually curated overlapping genes from 43 genera of unspliced RNA viruses infecting eukaryotes. Overlapping proteins have a sequence composition globally biased toward disorder-promoting amino acids and are predicted to contain significantly more structural disorder than nonoverlapping proteins. By analyzing the phylogenetic distribution of overlapping proteins, we were able to confirm that 17 of these had been created de novo and to study them individually. Most proteins created de novo are orphans (i.e., restricted to one species or genus). Almost all are accessory proteins that play a role in viral pathogenicity or spread, rather than proteins central to viral replication or structure. Most proteins created de novo are predicted to be fully disordered and have a highly unusual sequence composition. This suggests that some viral overlapping reading frames encoding hypothetical proteins with highly biased composition, often discarded as noncoding, might in fact encode proteins. Some proteins created de novo are predicted to be ordered, however, and whenever a three-dimensional structure of such a protein has been solved, it corresponds to a fold previously unobserved, suggesting that the study of these proteins could enhance our knowledge of protein space.


Journal of Biomolecular Structure & Dynamics | 2007

Intrinsic Disorder in the Protein Data Bank

Tanguy Le Gall; Pedro Romero; Marc S. Cortese; Vladimir N. Uversky; A. Keith Dunker

Abstract The Protein Data Bank (PDB) is the preeminent source of protein structural information. PDB contains over 32,500 experimentally determined 3-D structures solved using X-ray crystallography or nuclear magnetic resonance spectroscopy. Intrinsically disordered regions fail to form a fixed 3-D structure under physiological conditions. In this study, we compare the amino-acid sequences of proteins whose structures are determined by X-ray crystallography with the corresponding sequences from the Swiss-Prot database. The analyzed dataset includes 16,370 structures, which represent 18,101 PDB chains and 5,434 different proteins from 910 different organisms (2,793 eukaryotic, 2,109 bacterial, 288 viral, and 244 archaeal). In this dataset, on average, each Swiss-Prot protein is represented by 7 PDB chains with 76% of the crystallized regions being represented by more than one structure. Intriguingly, the complete sequences of only ~7% of proteins are observed in the corresponding PDB structures, and only ~25% of the total dataset have >95% of their lengths observed in the corresponding PDB structures. This suggests that the vast majority of PDB proteins is shorter than their corresponding Swiss-Prot sequences and/or contain numerous residues, which are not observed in maps of electron density. To determine the prevalence of disordered regions in PDB, the residues in the Swiss-Prot sequences were grouped into four general categories, “Observed” (which correspond to structured regions), “Not observed” (regions with missing electron density, potentially disordered), “Uncharacterized,” and “Ambiguous,” depending on their appearance in the corresponding PDB entries. This non-redundant set of residues can be viewed as a ‘fragment’ or empirical domain database that contains a set of experimentally determined structured regions or domains and a set of experimentally verified disordered regions or domains. We studied the propensities and properties of residues in these four categories and analyzed their relations to the predictions of disorder using several algorithms. “Non-observed,” “Ambiguous,” and “Uncharacterized” regions were shown to possess the amino acid compositional biases typical of intrinsically disordered proteins. The application of four different disorder predictors (PONDR® VL-XT, VL3-BA, VSL1P, and IUPred) revealed that the vast majority of residues in the “Observed” dataset are ordered, and that the “Not observed” regions are mostly disordered. The “Uncharacterized” regions possess some tendency toward order, whereas the predictions for the short “Ambiguous” regions are really ambiguous. Long “Ambiguous” regions (>70 amino acid residues) are mostly predicted to be ordered, suggesting that they are likely to be “wobbly” domains. Overall, we showed that completely ordered proteins are not highly abundant in PDB and many PDB sequences have disordered regions. In fact, in the analyzed dataset ~10% of the PDB proteins contain regions of consecutive missing or ambiguous residues longer than 30 amino-acids and ~40% of the proteins possess short regions (≥10 and <30 amino-acid long) of missing and ambiguous residues.


Protein Science | 2013

Exploring the binding diversity of intrinsically disordered proteins involved in one‐to‐many binding

Wei Lun Hsu; Christopher J. Oldfield; Bin Xue; Jingwei Meng; Fei Huang; Pedro Romero; Vladimir N. Uversky; A. Keith Dunker

Molecular recognition features (MoRFs) are intrinsically disordered protein regions that bind to partners via disorder‐to‐order transitions. In one‐to‐many binding, a single MoRF binds to two or more different partners individually. MoRF‐based one‐to‐many protein–protein interaction (PPI) examples were collected from the Protein Data Bank, yielding 23 MoRFs bound to 2–9 partners, with all pairs of same‐MoRF partners having less than 25% sequence identity. Of these, 8 MoRFs were bound to 2–9 partners having completely different folds, whereas 15 MoRFs were bound to 2–5 partners having the same folds but with low sequence identities. For both types of partner variation, backbone and side chain torsion angle rotations were used to bring about the conformational changes needed to enable close fits between a single MoRF and distinct partners. Alternative splicing events (ASEs) and posttranslational modifications (PTMs) were also found to contribute to distinct partner binding. Because ASEs and PTMs both commonly occur in disordered regions, and because both ASEs and PTMs are often tissue‐specific, these data suggest that MoRFs, ASEs, and PTMs may collaborate to alter PPI networks in different cell types. These data enlarge the set of carefully studied MoRFs that use inherent flexibility and that also use ASE‐based and/or PTM‐based surface modifications to enable the same disordered segment to selectively associate with two or more partners. The small number of residues involved in MoRFs and in their modifications by ASEs or PTMs may simplify the evolvability of signaling network diversity.


Regulatory Toxicology and Pharmacology | 2010

Toxicogenomics and cancer risk assessment: a framework for key event analysis and dose-response assessment for nongenotoxic carcinogens.

Joel P. Bercu; Robert A. Jolly; Kelly M. Flagella; Thomas K. Baker; Pedro Romero; James L. Stevens

In order to determine a threshold for nongenotoxic carcinogens, the traditional risk assessment approach has been to identify a mode of action (MOA) with a nonlinear dose-response. The dose-response for one or more key event(s) linked to the MOA for carcinogenicity allows a point of departure (POD) to be selected from the most sensitive effect dose or no-effect dose. However, this can be challenging because multiple MOAs and key events may exist for carcinogenicity and oftentimes extensive research is required to elucidate the MOA. In the present study, a microarray analysis was conducted to determine if a POD could be identified following short-term oral rat exposure with two nongenotoxic rodent carcinogens, fenofibrate and methapyrilene, using a benchmark dose analysis of genes aggregated in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) biological processes, which likely encompass key event(s) for carcinogenicity. The gene expression response for fenofibrate given to rats for 2days was consistent with its MOA and known key events linked to PPARα activation. The temporal response from daily dosing with methapyrilene demonstrated biological complexity with waves of pathways/biological processes occurring over 1, 3, and 7days; nonetheless, the benchmark dose values were consistent over time. When comparing the dose-response of toxicogenomic data to tumorigenesis or precursor events, the toxicogenomics POD was slightly below any effect level. Our results suggest that toxicogenomic analysis using short-term studies can be used to identify a threshold for nongenotoxic carcinogens based on evaluation of potential key event(s) which then can be used within a risk assessment framework.


FEBS Letters | 2013

Stochastic machines as a colocalization mechanism for scaffold protein function

Bin Xue; Pedro Romero; Maria Noutsou; Madelon M. Maurice; Stefan Rüdiger; Albert William; Marcin J. Mizianty; Lukasz Kurgan; Vladimir N. Uversky; A. Keith Dunker

The axis inhibition (Axin) scaffold protein colocalizes β‐catenin, casein kinase Iα, and glycogen synthetase kinase 3β by their binding to Axins long intrinsically disordered region, thereby yielding structured domains with flexible linkers. This complex leads to the phosphorylation of β‐catenin, marking it for destruction. Fusing proteins with flexible linkers vastly accelerates chemical interactions between them by their colocalization. Here we propose that the complex works by random movements of a “stochastic machine,” not by coordinated conformational changes. This non‐covalent, modular assembly process allows the various molecular machine components to be used in multiple processes.


Journal of Structural Biology | 2013

An assignment of intrinsically disordered regions of proteins based on NMR structures.

Motonori Ota; Ryotaro Koike; Takayuki Amemiya; Takeshi Tenno; Pedro Romero; Hidekazu Hiroaki; A. Keith Dunker; Satoshi Fukuchi

Intrinsically disordered proteins (IDPs) do not adopt stable three-dimensional structures in physiological conditions, yet these proteins play crucial roles in biological phenomena. In most cases, intrinsic disorder manifests itself in segments or domains of an IDP, called intrinsically disordered regions (IDRs), but fully disordered IDPs also exist. Although IDRs can be detected as missing residues in protein structures determined by X-ray crystallography, no protocol has been developed to identify IDRs from structures obtained by Nuclear Magnetic Resonance (NMR). Here, we propose a computational method to assign IDRs based on NMR structures. We compared missing residues of X-ray structures with residue-wise deviations of NMR structures for identical proteins, and derived a threshold deviation that gives the best correlation of ordered and disordered regions of both structures. The obtained threshold of 3.2Å was applied to proteins whose structures were only determined by NMR, and the resulting IDRs were analyzed and compared to those of X-ray structures with no NMR counterpart in terms of sequence length, IDR fraction, protein function, cellular location, and amino acid composition, all of which suggest distinct characteristics. The structural knowledge of IDPs is still inadequate compared with that of structured proteins. Our method can collect and utilize IDRs from structures determined by NMR, potentially enhancing the understanding of IDPs.

Collaboration


Dive into the Pedro Romero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge