Pedro Sérgio Fadini
Federal University of São Carlos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro Sérgio Fadini.
Science of The Total Environment | 2001
Pedro Sérgio Fadini; Wilson F. Jardim
In order to investigate the major sources and cycling of mercury in the Negro River Basin (Amazon), total metal measurements were carried out in soils, in river and lake waters, in the atmosphere, and in bulk precipitation during the period 1995 throughout 1998. Median values of 1.3 ng m(-3) in the atmosphere, 172 microg kg(-1) in soils, 4.6-7.5 ng l(-1) in three different lakes, 4.5 ng l(-1) in 17 different Negro River tributaries and 20.3 microg m(-2) year(-1) in bulk precipitation were found. Mercury concentrations in rivers and lakes waters, as well as in soils and bulk precipitation were high, considering the scarcity of anthropogenic point sources in the region. Mercury leaching from soil, the largest regional reservoir of this metal, was considered to be the major pathway to mercury enrichment in the region.
Journal of Hazardous Materials | 2014
Vivian Kuroki; Giulianna E. Bosco; Pedro Sérgio Fadini; Antonio A. Mozeto; Antonio R. Cestari; Wagner A. Carvalho
A bentonite from the Northeast Brazilian region was modified with lanthanum (NT-25La) using an ion exchange process. Lanthanum incorporation in the natural clay, as well as the properties of the clay materials, were confirmed by X-ray diffraction, X-ray fluorescence, specific surface area and scanning electron microscopy (SEM/EDX). Phosphate adsorption equilibrium and kinetic tests were performed at different temperatures. The adsorption data have shown that NT-25La reaches equilibrium between modified clay and phosphate solution within 60 min of contact. The phosphate retention at room temperature reached 95%, when initial phosphate concentration in solution was 5 mg L(-1). A kinetic-order variable model provided satisfactory fitting of the kinetic data. Adsorption of phosphate was best described by a Langmuir isotherm, with maximum phosphate sorption capacity of 14.0 mg g(-1). Two distinct adsorption mechanisms were observed that may influence the adsorption processes. The investigation pointed out that the phosphate adsorption occurs via physisorption processes and that the use of NT-25La provides a maximum phosphate sorption capacity higher than many commercial adsorbents.
Water Research | 2012
Thaís M. Yamada; Ana Paula E. Sueitt; D.A.S. Beraldo; Clarice Maria Rispoli Botta; Pedro Sérgio Fadini; M.R.L. Nascimento; Bias Marçal de Faria; Antonio A. Mozeto
The main objective of this study was to perform laboratory experiments on calcium nitrate addition to sediments of a tropical eutrophic urban reservoir (Ibirité reservoir, SE Brazil) to immobilize the reactive soluble phosphorus (RSP) and to evaluate possible geochemical changes and toxic effects caused by this treatment. Reductions of 75 and 89% in the concentration of RSP were observed in the water column and interstitial water, respectively, after 145 days of nitrate addition. The nitrate application increased the rate of autotrophic denitrification, causing a consumption of 98% of the added nitrate and oxidation of 99% of the acid volatile sulfide. As a consequence, there were increases in the sulfate and iron (II) concentrations in the sediment interstitial water and water column, as well as changes in the copper speciation in the sediments. Toxicity tests initially indicated that the high concentrations of nitrate and nitrite in the sediment interstitial water (up to 2300 mg L(-1) and 260 mg L(-1), respectively) were the major cause of mortality of Ceriodaphnia silvestrii and Chironomus xanthus. However, at the end of the experiment, the sediment toxicity was completely removed and a reduction in the 48 h-EC50 of the water was also observed. Based on these results we can say that calcium nitrate treatment proved to be a valuable tool in remediation of eutrophic aquatic ecosystems leading to conditions that can support a great diversity of organisms after a restoration period.
Journal of Environmental Management | 2012
José Roberto Guimarães; Carolina Rittes Turato Farah; Milena Guedes Maniero; Pedro Sérgio Fadini
The degradation of formaldehyde in an aqueous solution (400 mg L(-1)) was studied using photolysis, peroxidation and advanced oxidation processes (UV/H(2)O(2), Fenton and photo-Fenton). Photolysis was the only process tested that did not reduce formaldehyde concentration; however, only advanced oxidation processes (AOPs) significantly decreased dissolved organic carbon (DOC). UV/H(2)O(2) and photo-Fenton AOPs were used to degrade formaldehyde at the highest concentrations (1200-12,000 mg L(-1)); the processes were able to reduce CH(2)O by 98% and DOC by 65%. Peroxidation with ultraviolet light (UV/H(2)O(2)) improved the efficiency of treatment of effluent from an anatomy laboratory. The effluents CH(2)O content was reduced by 91%, DOC by 48%, COD by 46% and BOD by 53% in 420 min of testing.
Science of The Total Environment | 2014
Diana Nara Ribeiro de Sousa; Antonio A. Mozeto; Renato Lajarim Carneiro; Pedro Sérgio Fadini
The use of chemical markers of undoubted anthropogenic sources for surface freshwater contamination by wastewaters was evaluated employing correlations observed between measured physico-chemical parameters as the electrical conductivity and the concentration of different emerging organic compounds. During the period from April/2011 to April/2012 spatial-temporal variations and contamination patterns of two rivers (Piraí and Jundiaí rivers), São Paulo state, Brazil were evaluated. Seven physico-chemical parameters and concentrations of different classes of emerging contaminants were determined in samples collected in seven field campaigns. The high linear correlation coefficients obtained for the compounds diclofenac (r=0.9085), propanolol (r=0.8994), ibuprofen (r=0.8720) and atenolol (r=0.7811) with electrical conductivity, also corroborated by principal component analysis (PCA), point to the potential use of these compounds as markers of investigated surface water contamination by wastewaters. Due to specific inputs, these environmental markers showed very good effectiveness for the identification and differentiation of water body contamination by discharges of treated and untreated urban sewage.
Analytica Chimica Acta | 2013
Grazielle Cabral de Lima; Ayla Campos do Lago; Arley Alves Chaves; Pedro Sérgio Fadini; Pedro Orival Luccas
This paper describes selenium determination based on Se(0) preconcentration in the imprinted polymer (synthesized with 2.25mmol SeO2, 4-vinylpyridine and 1-vinylimidazole) with subsequent detection on-line in HG-FAAS. During the synthesis, SeO2 is reduced to Se (0). Therefore, there are no MIP neither IIP in the present work, thus we denominated: AIP, i.e., atomically imprinted polymers. For the optimization of analytical parameters Doehlert design was used. The method presented limit of detection and limit of quantification of 53 and 177ngL(-1), respectively, and linear range from 0.17 up to 6μgL(-1) (r=0.9936). The preconcentration factor (PF), consumptive index (CI) and concentration efficiency (CE) were 232; 0.06mL and 58min(-1) respectively. The proposed method was successfully applied to determine Se in Brazil nuts (0.33±0.03mgkg(-1)), apricot (0.46±0.02mgkg(-1)), white bean (0.47±0.03mgkg(-1)), rice flour (0.47±0.02mgkg(-1)) and milk powder (0.22±0.01mgkg(-1)) samples. It was possible to do 12 analyzes per hour. Accuracy was checked and confirmed by analyzing certified reference material (DORM-2, dogfish muscle), and samples precision was satisfactory with RSD lower than 10%.
Journal of the Brazilian Chemical Society | 2009
Gilmar Silvério da Silva; Márcia Cristina Bisinoti; Pedro Sérgio Fadini; Gabriela Magarelli; Wilson F. Jardim; Anne Hélène Fostier
Despite the low level of industrial activity and human density, Hg concentration in the Negro River basin is relatively high. Soil enriched with naturally high Hg concentrations and atmospheric deposition are the main sources of the metal in this watershed. Differences between invasive and evasive fluxes at the water/air and soil/air interfaces indicate Hg accumulation in the basin at a rate of 39.9 t y-1. The type of soil, which is the main source of mercury for the water bodies, the hydrological cycle with floods and dry periods, act markedly on the water redox chemistry. A complex interaction between many seasonable variables such as solar intensity, water pH, age of the naturally occurring organic matter and the hydrological cycle alter the redox characteristics of these black water bodies, thus markedly affecting the consumption of Hg0 and the degradation of methylmercury present in the water. Although methylation is favored in black waters, photodegradation counterpoints this formation, thus regulating the methylmercury burden in the water column.
Journal of the Brazilian Chemical Society | 2004
Pedro Sérgio Fadini; Wilson F. Jardim; José Roberto Guimarães
Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) are the major parameters used as routine surrogate tests for measuring the load of organic carbon into the environment. In this context, an evaluation of possible replacement of BOD and COD for Dissolved Organic Carbon (DOC) measurements are presented for different wastewaters. For anaerobic pond effluent, the following correlations were obtained: COD = 1.08 DOC + 79 and BOD = 0.82 DOC + 12. For facultative pond effluent, COD = -0.29DOC + 109 and BOD = 0.14DOC + 26. For raw sewage COD = 4.18DOC - 2 and BOD = 0.46COD + 5. For aerated pond effluent COD = 3.57DOC + 6 and BOD = 0.27COD + 3. For sedimentation pond effluent, COD = -1.34DOC + 138 and BOD = 0.73DOC + 16.5. Determination of COD was not appropriate for substituting classical alternatives in tested samples in despite of the limitations of the samples.
Environmental Monitoring and Assessment | 2014
Antonio A. Mozeto; Thaís M. Yamada; Cássia R. de Morais; M. R. L. Nascimento; Pedro Sérgio Fadini; Ronaldo J. Torres; Ana Paula E. Sueitt; Bias Marçal de Faria
Although the Ibirité reservoir (an urban tropical eutrophic reservoir) has been the recipient of the discharge of a large volume of raw urban sewage, the key cause of ecosystem degradation has been historically solely attributed to the discharge of effluents from an oil refinery. This fact motivated an investigation to unravel the compositions of contaminants in the sediments to evaluate their distributions, possible sources, and potential impacts on sediment–water quality. The concentrations of polycyclic aromatic and aliphatic hydrocarbons and of metals and metalloids were, in general, significantly lower than some selected polluted sites used for comparison. Calculated distribution indexes showed that the hydrocarbon sources were petrogenic, pyrogenic, and biogenic. Only a few PAHs exceeded the threshold effects level (TEL) guideline. Industrial activities are the presumed sources of metals and metalloids except for copper, which is from copper sulfate used as algaecide in the reservoir. The bioavailable concentrations of some metal and metalloid exceeded the TEL–PEL guidelines. The acid volatile sulfide concentration was greater than that of the simultaneously extracted metals in the clayey–silty reservoir sediments, whereas the opposite result was observed for the sandy sediments of the tributaries. The sediment interstitial water toxic units were >1 for metals, thus indicating that metals are potentially toxic to the benthos. Considering the data set generated in this study, it can be concluded that the degradation of Ibirité reservoir and its tributaries cannot be solely attributed to the input of hydrocarbons, but predominantly to the discharge of raw urban sewage and effluents from other industrial sources.
Journal of Separation Science | 2015
Diana Nara Ribeiro de Sousa; Guilherme M. Grosseli; Antonio A. Mozeto; Renato Lajarim Carneiro; Pedro Sérgio Fadini
Sediments are the fate of several emerging organic contaminants, such as pharmaceuticals, personal care products and hormones, and therefore an important subject in environmental monitoring studies. In the present work, a simple and sensitive method was developed, validated and applied for the simultaneous extraction of atenolol, caffeine, carbamazepine, diclofenac, ibuprofen, naproxen, propranolol, triclosan, estrone, 17-β-estradiol and 17-α-ethinylestradiol using ultrasound-assisted extraction from freshwater sediment samples followed by solid-phase extraction clean-up and liquid chromatography with tandem mass spectrometry detection. The solvent type and extraction pH were evaluated to obtain the highest recoveries of the compounds. The best method shows absolute recoveries between 54.0 and 94.4% at 50 ng/g concentration. The method exhibits good precision with relative standard deviation ranging from 1.0-16%. The detection and quantification limits ranged from 0.006-0.067 and 0.016-0.336 ng/g, respectively. The developed method was successfully applied to freshwater sediment samples collected from different sites in Jundiaí River basin of São Paulo State, Brazil. The compounds atenolol, caffeine, propranolol and triclosan were detected in all the sampling sites with concentrations of 13.8, 41.0, 28.5 and 176 ng/g, respectively.