Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro T. Monteiro is active.

Publication


Featured researches published by Pedro T. Monteiro.


Nucleic Acids Research | 2006

The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae

Miguel C. Teixeira; Pedro T. Monteiro; Pooja Jain; Sandra Tenreiro; Alexandra R. Fernandes; Nuno P. Mira; Marta Alenquer; Ana T. Freitas; Arlindo L. Oliveira; Isabel Sá-Correia

We present the YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT; ) database, a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. This database is a repository of 12 346 regulatory associations between transcription factors and target genes, based on experimental evidence which was spread throughout 861 bibliographic references. It also includes 257 specific DNA-binding sites for more than a hundred characterized transcription factors. Further information about each yeast gene included in the database was obtained from Saccharomyces Genome Database (SGD), Regulatory Sequences Analysis Tools and Gene Ontology (GO) Consortium. Computational tools are also provided to facilitate the exploitation of the gathered data when solving a number of biological questions as exemplified in the Tutorial also available on the system. YEASTRACT allows the identification of documented or potential transcription regulators of a given gene and of documented or potential regulons for each transcription factor. It also renders possible the comparison between DNA motifs, such as those found to be over-represented in the promoter regions of co-regulated genes, and the transcription factor-binding sites described in the literature. The system also provides an useful mechanism for grouping a list of genes (for instance a set of genes with similar expression profiles as revealed by microarray analysis) based on their regulatory associations with known transcription factors.


Nucleic Acids Research | 2011

YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface

Dário Abdulrehman; Pedro T. Monteiro; Miguel C. Teixeira; Nuno P. Mira; Artur B. Lourenço; Sandra Costa dos Santos; Tânia R. Cabrito; Alexandre P. Francisco; Sara C. Madeira; Ricardo Santos Aires; Arlindo L. Oliveira; Isabel Sá-Correia; Ana T. Freitas

The YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT) information system (http://www.yeastract.com) was developed to support the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2010, this database contains over 48 200 regulatory associations between transcription factors (TFs) and target genes, including 298 specific DNA-binding sites for 110 characterized TFs. All regulatory associations stored in the database were revisited and detailed information on the experimental evidences that sustain those associations was added and classified as direct or indirect evidences. The inclusion of this new data, gathered in response to the requests of YEASTRACT users, allows the user to restrict its queries to subsets of the data based on the existence or not of experimental evidences for the direct action of the TFs in the promoter region of their target genes. Another new feature of this release is the availability of all data through a machine readable web-service interface. Users are no longer restricted to the set of available queries made available through the existing web interface, and can use the web service interface to query, retrieve and exploit the YEASTRACT data using their own implementation of additional functionalities. The YEASTRACT information system is further complemented with several computational tools that facilitate the use of the curated data when answering a number of important biological questions. Since its first release in 2006, YEASTRACT has been extensively used by hundreds of researchers from all over the world. We expect that by making the new data and services available, the system will continue to be instrumental for yeast biologists and systems biology researchers.


Nucleic Acids Research | 2014

The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae

Miguel C. Teixeira; Pedro T. Monteiro; Joana F. Guerreiro; Joana P. Gonçalves; Nuno P. Mira; Sandra Costa dos Santos; Tânia R. Cabrito; Margarida Palma; Catarina Costa; Alexandre P. Francisco; Sara C. Madeira; Arlindo L. Oliveira; Ana T. Freitas; Isabel Sá-Correia

The YEASTRACT (http://www.yeastract.com) information system is a tool for the analysis and prediction of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2013, this database contains over 200 000 regulatory associations between transcription factors (TFs) and target genes, including 326 DNA binding sites for 113 TFs. All regulatory associations stored in YEASTRACT were revisited and new information was added on the experimental conditions in which those associations take place and on whether the TF is acting on its target genes as activator or repressor. Based on this information, new queries were developed allowing the selection of specific environmental conditions, experimental evidence or positive/negative regulatory effect. This release further offers tools to rank the TFs controlling a gene or genome-wide response by their relative importance, based on (i) the percentage of target genes in the data set; (ii) the enrichment of the TF regulon in the data set when compared with the genome; or (iii) the score computed using the TFRank system, which selects and prioritizes the relevant TFs by walking through the yeast regulatory network. We expect that with the new data and services made available, the system will continue to be instrumental for yeast biologists and systems biology researchers.


Nucleic Acids Research | 2007

YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae

Pedro T. Monteiro; Nuno D. Mendes; Miguel C. Teixeira; Sofia d’Orey; Sandra Tenreiro; Nuno P. Mira; Hélio Pais; Alexandre P. Francisco; Alexandra M. Carvalho; Artur B. Lourenço; Isabel Sá-Correia; Arlindo L. Oliveira; Ana T. Freitas

The Yeast search for transcriptional regulators and consensus tracking (YEASTRACT) information system (www.yeastract.com) was developed to support the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in September 2007, this database contains over 30 990 regulatory associations between Transcription Factors (TFs) and target genes and includes 284 specific DNA binding sites for 108 characterized TFs. Computational tools are also provided to facilitate the exploitation of the gathered data when solving a number of biological questions, in particular the ones that involve the analysis of global gene expression results. In this new release, YEASTRACT includes DISCOVERER, a set of computational tools that can be used to identify complex motifs over-represented in the promoter regions of co-regulated genes. The motifs identified are then clustered in families, represented by a position weight matrix and are automatically compared with the known transcription factor binding sites described in YEASTRACT. Additionally, in this new release, it is possible to generate graphic depictions of transcriptional regulatory networks for documented or potential regulatory associations between TFs and target genes. The visual display of these networks of interactions is instrumental in functional studies. Tutorials are available on the system to exemplify the use of all the available tools.


european conference on computational biology | 2008

Temporal logic patterns for querying dynamic models of cellular interaction networks

Pedro T. Monteiro; Delphine Ropers; Radu Mateescu; Ana T. Freitas; Hidde de Jong

MOTIVATION Models of the dynamics of cellular interaction networks have become increasingly larger in recent years. Formal verification based on model checking provides a powerful technology to keep up with this increase in scale and complexity. The application of modelchecking approaches is hampered, however, by the difficulty for nonexpert users to formulate appropriate questions in temporal logic. RESULTS In order to deal with this problem, we propose the use of patterns, that is, high-level query templates that capture recurring biological questions and can be automatically translated into temporal logic. The applicability of the developed set of patterns has been investigated by the analysis of an extended model of the network of global regulators controlling the carbon starvation response in Escherichia coli. AVAILABILITY GNA and the model of the carbon starvation response network are available at http://www-helix.inrialpes.fr/gna.


BMC Systems Biology | 2013

SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools

Claudine Chaouiya; Duncan Bérenguier; Sarah M. Keating; Aurélien Naldi; Martijn P. van Iersel; Nicolas Rodriguez; Andreas Dräger; Finja Büchel; Thomas Cokelaer; Bryan Kowal; Benjamin Wicks; Emanuel Gonçalves; Julien Dorier; Michel Page; Pedro T. Monteiro; Axel von Kamp; Ioannis Xenarios; Hidde de Jong; Michael Hucka; Steffen Klamt; Denis Thieffry; Nicolas Le Novère; Julio Saez-Rodriguez; Tomáš Helikar

BackgroundQualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing.ResultsWe present the Systems Biology Markup Language (SBML) Qualitative Models Package (“qual”), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models.ConclusionsSBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.


Bioinformatics | 2010

Efficient parameter search for qualitative models of regulatory networks using symbolic model checking

Grégory Batt; Michel Page; Irene Cantone; Gregor Goessler; Pedro T. Monteiro; Hidde de Jong

MOTIVATION Investigating the relation between the structure and behavior of complex biological networks often involves posing the question if the hypothesized structure of a regulatory network is consistent with the observed behavior, or if a proposed structure can generate a desired behavior. RESULTS The above questions can be cast into a parameter search problem for qualitative models of regulatory networks. We develop a method based on symbolic model checking that avoids enumerating all possible parametrizations, and show that this method performs well on real biological problems, using the IRMA synthetic network and benchmark datasets. We test the consistency between IRMA and time-series expression profiles, and search for parameter modifications that would make the external control of the system behavior more robust. AVAILABILITY GNA and the IRMA model are available at http://ibis.inrialpes.fr/.


Frontiers in Genetics | 2016

Logical Modeling and Dynamical Analysis of Cellular Networks

Wassim Abou-Jaoudé; Pauline Traynard; Pedro T. Monteiro; Julio Saez-Rodriguez; Tomáš Helikar; Denis Thieffry; Claudine Chaouiya

The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.


Frontiers in Bioengineering and Biotechnology | 2015

Model checking to assess T-helper cell plasticity.

Wassim Abou-Jaoudé; Pedro T. Monteiro; Aurélien Naldi; Maximilien Grandclaudon; Vassili Soumelis; Claudine Chaouiya; Denis Thieffry

Computational modeling constitutes a crucial step toward the functional understanding of complex cellular networks. In particular, logical modeling has proven suitable for the dynamical analysis of large signaling and transcriptional regulatory networks. In this context, signaling input components are generally meant to convey external stimuli, or environmental cues. In response to such external signals, cells acquire specific gene expression patterns modeled in terms of attractors (e.g., stable states). The capacity for cells to alter or reprogram their differentiated states upon changes in environmental conditions is referred to as cell plasticity. In this article, we present a multivalued logical framework along with computational methods recently developed to efficiently analyze large models. We mainly focus on a symbolic model checking approach to investigate switches between attractors subsequent to changes of input conditions. As a case study, we consider the cellular network regulating the differentiation of T-helper (Th) cells, which orchestrate many physiological and pathological immune responses. To account for novel cellular subtypes, we present an extended version of a published model of Th cell differentiation. We then use symbolic model checking to analyze reachability properties between Th subtypes upon changes of environmental cues. This allows for the construction of a synthetic view of Th cell plasticity in terms of a graph connecting subtypes with arcs labeled by input conditions. Finally, we explore novel strategies enabling specific Th cell polarizing or reprograming events.


Methods of Molecular Biology | 2012

Genetic Network Analyzer: A Tool for the Qualitative Modeling and Simulation of Bacterial Regulatory Networks

Grégory Batt; Bruno Besson; Pierre-Emmanuel Ciron; Hidde de Jong; Estelle Dumas; Johannes Geiselmann; Regis Monte; Pedro T. Monteiro; Michel Page; François Rechenmann; Delphine Ropers

Genetic Network Analyzer (GNA) is a tool for the qualitative modeling and simulation of gene regulatory networks, based on so-called piecewise-linear differential equation models. We describe the use of this tool in the context of the modeling of bacterial regulatory networks, notably the network of global regulators controlling the adaptation of Escherichia coli to carbon starvation conditions. We show how the modeler, by means of GNA, can define a regulatory network, build a model of the network, determine the steady states of the system, perform a qualitative simulation of the network dynamics, and analyze the simulation results using model-checking tools. The example illustrates the interest of qualitative approaches for the analysis of the dynamics of bacterial regulatory networks.

Collaboration


Dive into the Pedro T. Monteiro's collaboration.

Top Co-Authors

Avatar

Claudine Chaouiya

Instituto Gulbenkian de Ciência

View shared research outputs
Top Co-Authors

Avatar

Ana T. Freitas

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Isabel Sá-Correia

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Miguel C. Teixeira

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denis Thieffry

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

João Ascenso

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Remy

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge