Pedro Torres
National University of Colombia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pedro Torres.
Journal of Lightwave Technology | 2010
Juan F. Botero-Cadavid; Jesús D. Causado-Buelvas; Pedro Torres
In this work, we analyze the spectral properties of locally pressed fiber Bragg gratings (FBGs) written into polarization maintaining fibers. We study the evolution of the spectral response of a FBG written into a PANDA fiber when the central region of the grating is perturbed by a diametrical load. Due to the complex structure of the fiber, a finite element model was carried out to determine the strain distributions generated at the center region of the fiber core, and hence taking the induced change in refractive index as the change in effective refractive index due to the applied load. Once the shifting in Bragg wavelength and the optical principal axes of the loaded region are known, a modified transfer matrix method is applied to calculate the spectral response of the FBG. We have found experimentally and by numerical simulations that the reflected spectra for the grating exhibit a narrow and tunable polarization-dependent spectral hole. The tuning of this spectral hole is dependent of the magnitude and the angle of the applied force over the optical fiber.
Applied Optics | 2017
Erick Reyes-Vera; Cristiano M. B. Cordeiro; Pedro Torres
A highly sensitive temperature sensor based on an all-fiber Sagnac loop interferometer combined with metal-filled side-hole photonic crystal fiber (PCF) is proposed and demonstrated. PCFs containing two side holes filled with metal offer a structure that can be modified to create a change in the birefringence of the fiber by the expansion of the filler metal. Bismuth and indium were used to examine the effect of filler metal on the temperature sensitivity of the fiber-optic temperature sensor. It was found from measurements that a very high temperature sensitivity of -9.0 nm/°C could be achieved with the indium-filled side-hole PCF. The experimental results are compared to numerical simulations with good agreement. It is shown that the high temperature sensitivity of the sensor is attributed to the fiber microstructure, which has a significant influence on the modulation of the birefringence caused by the expansion of the metal-filled holes.
Optics Letters | 2014
Pedro Torres; Erick Reyes-Vera; A. Díez; Miguel V. Andrés
We present a sensing architecture consisting of a two-core chirped microstructured optical fiber (MOF) for refractive index sensing of fluids. We show that by introducing a chirp in the hole size, the MOF can be a structure with decoupled cores, forming a Mach-Zehnder interferometer in which the analyte directly modulates the device transmittance by its differential influence on the effective refractive index of each core mode. We show that by filling all fiber holes with analyte, the sensing structure achieves high sensitivity (transmittance changes of 300 per RIU at 1.42) and has the potential for use over a wide range of analyte refractive index.
Optics Express | 2006
Victor H. Aristizabal; Francisco Javier Vélez; Pedro Torres
A numerical approach based on the scalar finite element method is applied to analyse the modal properties of photonic crystal fibers having a solid core and a cladding region with either circular or non-circular microstructured holes. A correction which accounts for the polarization effects due to the large refractive index difference between silica materials and air holes is included in the analysis. Numerical results show that the proposed technique is an efficient and accurate alternative to vector ones.
Journal of Optics | 2016
Erick Reyes-Vera; Pedro Torres
We present a comprehensive study of the influence of the filler metal on the birefringent optical properties of a photonic crystal fiber containing two integrated electrodes. Bismuth and indium were used to examine the effects of the electrode composition on the temperature sensitivity of this special microstructured fiber. We found that the fiber microstructure significantly influences the metal-induced sensitivity of the wavelength dependent birefringence, making the behavior of the birefringence change strongly with the electrode material. By modeling the anisotropic changes induced by the metal expansion in the refractive index within the fiber we examine the essential features of the fiber birefringence.
Applied Physics Letters | 2014
Erick Reyes-Vera; Nelson D. Gómez-Cardona; Giancarlo Chesini; Cristiano M. B. Cordeiro; Pedro Torres
We report on the temperature sensitivity of the birefringence properties of a special kind of photonic crystal fiber containing two side holes filled with Indium metal. The modulation of the fiber birefringence is accomplished through the stress field induced by the expansion of the metal. Although the fiber was made at low gas pressures during the indium infiltration process, the birefringence showed anomalous property at a relatively low temperature value, which is completely different from those reported in conventional-like fibers with two holes filled with metal. By modeling the anisotropic changes induced by the metal expansion to the refractive index within the fiber, we are able to reproduce the experimental results. Our results have practical relevance for the design of devices based on this technology.
Photonics Letters of Poland | 2010
Erick Reyes-Vera; Esteban Gonzalez-Valencia; Pedro Torres
The paper presents the way that colour can serve solving the problem of calibration points indexing in a camera geometrical calibration process. We propose a technique in which indexes of calibration points in a black-and-white chessboard are represented as sets of colour regions in the neighbourhood of calibration points. We provide some general rules for designing a colour calibration chessboard and provide a method of calibration image analysis. We show that this approach leads to obtaining better results than in the case of widely used methods employing information about already indexed points to compute indexes. We also report constraints concerning the technique. Nowadays we are witnessing an increasing need for camera geometrical calibration systems. They are vital for such applications as 3D modelling, 3D reconstruction, assembly control systems, etc. Wherever possible, calibration objects placed in the scene are used in a camera geometrical calibration process. This approach significantly increases accuracy of calibration results and makes the calibration data extraction process easier and universal. There are many geometrical camera calibration techniques for a known calibration scene [1]. A great number of them use as an input calibration points which are localised and indexed in the scene. In this paper we propose the technique of calibration points indexing which uses a colour chessboard. The presented technique was developed by solving problems we encountered during experiments with our earlier methods of camera calibration scene analysis [2]-[3]. In particular, the proposed technique increases the number of indexed points points in case of local lack of calibration points detection. At the beginning of the paper we present a way of designing a chessboard pattern. Then we describe a calibration point indexing method, and finally we show experimental results. A black-and-white chessboard is widely used in order to obtain sub-pixel accuracy of calibration points localisation [1]. Calibration points are defined as corners of chessboard squares. Assuming the availability of rough localisation of these points, the points can be indexed. Noting that differences in distances between neighbouring points in calibration scene images differ slightly, one of the local searching methods can be employed (e.g. [2]). Methods of this type search for a calibration point to be indexed, using a window of a certain size. The position of the window is determined by a vector representing the distance between two previously indexed points in the same row or column. However, experiments show that this approach has its disadvantages, as described below. * E-mail: [email protected] Firstly, there is a danger of omitting some points during indexing in case of local lack of calibration points detection in a neighbourhood (e.g. caused by the presence of non-homogeneous light in the calibration scene). A particularly unfavourable situation is when the local lack of detection effects in the appearance of separated regions of detected calibration points. It is worth saying that such situations are likely to happen for calibration points situated near image borders. Such points are very important for the analysis of optical nonlinearities, and a lack of them can significantly influence the accuracy of distortion modelling. Secondly, such methods may give wrong results in the case of optical distortion with strong nonlinearities when getting information about the neighbouring index is not an easy task. Beside this, the methods are very sensitive to a single false localisation of a calibration point. Such a single false localisation can even result in false indexing of a big set of calibration points. To avoid the above-mentioned problems, we propose using a black-and-white chessboard which contains the coded index of a calibration point in the form of colour squares situated in the nearest neighbourhood of each point. The index of a certain calibration point is determined by colours of four nearest neighbouring squares (Fig.1). An order of squares in such foursome is important. Because the size of a colour square is determined only by the possibility of correct colour detection, the size of a colour square can be smaller than the size of a black or white square. The larger size of a black or white square is determined by the requirements of the exact localisation step which follows the indexing of calibration points [3]. In this step, edge information is extracted from a blackand-white chessboard. This edge information needs larger Artur Nowakowski, Wladyslaw Skarbek Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, [email protected] Received February 10, 2009; accepted March 27, 2009; published March 31, 2009 http://www.photonics.pl/PLP
RIAO/OPTILAS 2007: 6th Ibero‐American Conference on Optics (RIAO); 9th Latin‐American Meeting on Optics, Lasers and Applications (OPTILAS) | 2008
Juan F. Botero-Cadavid; Jesús D. Causado-Buelvas; Pedro Torres
In this work, we present an experimental and numerical analysis of spectral response of a fiber Bragg grating (FBG) written in a PANDA Polarization‐Maintaining Fiber (PMF) when the central region of the grating is perturbed by a diametrical load applied along of a direction defined with respect to the slow axis of the PMF. Due to the complex structure of the fiber, a finite element model was carried out to determine the strain distributions generated in the perturbed region of PMF. The FBG spectral response was theoretically evaluated using improved transfer matrix formalism, including a term in this formalism that allows to consider the induced rotation of the principal optical propagating axis. We have found experimentally and by numerical simulations that the reflected grating spectra for short FBG exhibit a narrow and tunable polarization‐dependent transmission band. The tuning of the spectral response of this band is linearly dependent of the magnitude and the angle of the applied force over the opti...
Advances in Optical Technologies | 2016
Catalina Hurtado Castano; Rodrigo Acuna Herrera; Pedro Torres
A detailed procedure is presented to compute analytically the acoustooptic coupling coefficient between copropagating core and lowest-order cladding modes in tapered fiber optics. Based on the effect of the local bending, the linear and nonlinear variations in the refractive index are modeled. A set of equations and parameters are presented in order to calculate the influence of acoustooptic effect in nonlinear pulse propagation. We will show that as the tapered fiber diameter decreases more energy can be transferred to the cladding and the nonlinear phenomena can compensate the coupling coefficients effects.
International Conference on Optical Fibre Sensors (OFS24) | 2015
Fabian Velasquez-Botero; Erick Reyes-Vera; Pedro Torres
Refractometric features of dual-core transversally chirped microstructured optical fibers (MOF) are evaluated. It is shown from numerical results that the chirped MOF could act as a structure with decoupled cores, forming a Mach– Zehnder interferometer in which the analyte directly modulates the device transmittance by its differential influence on the effective refractive index of each core mode. We investigate the influence of the MOF parameters and the analyte refractive index on sensor performance. This novel structure is suitable for measuring refractive indices in the 1.33–1.44 range.