Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro Vargas-Pinto is active.

Publication


Featured researches published by Pedro Vargas-Pinto.


PLOS ONE | 2014

Calcium-Activated Potassium Current Modulates Ventricular Repolarization in Chronic Heart Failure

Ingrid M. Bonilla; Victor P. Long; Pedro Vargas-Pinto; Patrick J. Wright; Andriy Belevych; Qing Lou; Kent Mowrey; Jae Yoo; Philip F. Binkley; Vadim V. Fedorov; Sandor Gyorke; Paulus M. L. Janssen; Ahmet Kilic; Peter J. Mohler; Cynthia A. Carnes

The role of IKCa in cardiac repolarization remains controversial and varies across species. The relevance of the current as a therapeutic target is therefore undefined. We examined the cellular electrophysiologic effects of IKCa blockade in controls, chronic heart failure (HF) and HF with sustained atrial fibrillation. We used perforated patch action potential recordings to maintain intrinsic calcium cycling. The IKCa blocker (apamin 100 nM) was used to examine the role of the current in atrial and ventricular myocytes. A canine tachypacing induced model of HF (1 and 4 months, n = 5 per group) was used, and compared to a group of 4 month HF with 6 weeks of superimposed atrial fibrillation (n = 7). A group of age-matched canine controls were used (n = 8). Human atrial and ventricular myocytes were isolated from explanted end-stage failing hearts which were obtained from transplant recipients, and studied in parallel. Atrial myocyte action potentials were unchanged by IKCa blockade in all of the groups studied. IKCa blockade did not affect ventricular myocyte repolarization in controls. HF caused prolongation of ventricular myocyte action potential repolarization. IKCa blockade caused further prolongation of ventricular repolarization in HF and also caused repolarization instability and early afterdepolarizations. SK2 and SK3 expression in the atria and SK3 in the ventricle were increased in canine heart failure. We conclude that during HF, IKCa blockade in ventricular myocytes results in cellular arrhythmias. Furthermore, our data suggest an important role for IKCa in the maintenance of ventricular repolarization stability during chronic heart failure. Our findings suggest that novel antiarrhythmic therapies should have safety and efficacy evaluated in both atria and ventricles.


Journal of Molecular and Cellular Cardiology | 2012

Differential regulation of EHD3 in human and mammalian heart failure

Hjalti Gudmundsson; Jerry Curran; Farshid Kashef; Jedidiah S. Snyder; Sakima A. Smith; Pedro Vargas-Pinto; Ingrid M. Bonilla; Robert M. Weiss; Mark E. Anderson; Philip F. Binkley; Robert B. Felder; Cynthia A. Carnes; Hamid Band; Thomas J. Hund; Peter J. Mohler

Electrical and structural remodeling during the progression of cardiovascular disease is associated with adverse outcomes subjecting affected patients to overt heart failure (HF) and/or sudden death. Dysfunction in integral membrane protein trafficking has long been linked with maladaptive electrical remodeling. However, little is known regarding the molecular identity or function of these intracellular targeting pathways in the heart. Eps15 homology domain-containing (EHD) gene products (EHD1-4) are polypeptides linked with endosomal trafficking, membrane protein recycling, and lipid homeostasis in a wide variety of cell types. EHD3 was recently established as a critical mediator of membrane protein trafficking in the heart. Here, we investigate the potential link between EHD3 function and heart disease. Using four different HF models including ischemic rat heart, pressure overloaded mouse heart, chronic pacing-induced canine heart, and non-ischemic failing human myocardium we provide the first evidence that EHD3 levels are consistently increased in HF. Notably, the expression of the Na/Ca exchanger (NCX1), targeted by EHD3 in heart is similarly elevated in HF. Finally, we identify a molecular pathway for EHD3 regulation in heart failure downstream of reactive oxygen species and angiotensin II signaling. Together, our new data identify EHD3 as a previously unrecognized component of the cardiac remodeling pathway.


Circulation-arrhythmia and Electrophysiology | 2013

Sinoatrial Node Reentry in a Canine Chronic Left Ventricular Infarct Model Role of Intranodal Fibrosis and Heterogeneity of Refractoriness

Alexey V. Glukhov; Lori T. Hage; Brian J. Hansen; Adriana Pedraza-Toscano; Pedro Vargas-Pinto; Robert L. Hamlin; Raul Weiss; Cynthia A. Carnes; George E. Billman; Vadim V. Fedorov

Background— Reentrant arrhythmias involving the sinoatrial node (SAN), namely SAN reentry, remain one of the most intriguing enigmas of cardiac electrophysiology. The goal of the present study was to elucidate the mechanism of SAN micro-reentry in canine hearts with post–myocardial infarction (MI) structural remodeling. Methods and Results— In vivo, Holter monitoring revealed ventricular arrhythmias and SAN dysfunctions in post–left ventricular MI (6–15 weeks) dogs (n=5) compared with control dogs (n=4). In vitro, high-resolution near-infrared optical mapping of intramural SAN activation was performed in coronary perfused atrial preparations from MI (n=5) and controls (n=4). Both SAN macro- (slow-fast; 16–28 mm) and micro-reentry (1–3 mm) were observed in 60% of the MI preparations during moderate autonomic stimulation (acetylcholine [0.1 µmol/L] or isoproterenol [0.01–0.1 µmol/L]) after termination of atrial tachypacing (5–8 Hz), a finding not seen in controls. The autonomic stimulation induced heterogeneous changes in the SAN refractoriness; thus, competing atrial or SAN pacemaker waves could produce unidirectional blocks and initiate intranodal micro-reentry. The micro-reentry pivot waves were anchored to the longitudinal block region and produced both tachycardia and paradoxical bradycardia (due to exit block), despite an atrial ECG morphology identical to regular sinus rhythm. Intranodal longitudinal conduction blocks coincided with interstitial fibrosis strands that were exaggerated in the MI SAN pacemaker complex (fibrosis density: 37±7% MI versus 23±6% control; P<0.001). Conclusions— Both tachy- and brady-arrhythmias can result from SAN micro-reentry. Postinfarction remodeling, including increased intranodal fibrosis and heterogeneity of refractoriness, provides substrates for SAN reentry.Background— Reentrant arrhythmias involving the sinoatrial node (SAN), namely SAN reentry, remain one of the most intriguing enigmas of cardiac electrophysiology. The goal of the present study was to elucidate the mechanism of SAN micro-reentry in canine hearts with post–myocardial infarction (MI) structural remodeling. Methods and Results— In vivo, Holter monitoring revealed ventricular arrhythmias and SAN dysfunctions in post–left ventricular MI (6–15 weeks) dogs (n=5) compared with control dogs (n=4). In vitro, high-resolution near-infrared optical mapping of intramural SAN activation was performed in coronary perfused atrial preparations from MI (n=5) and controls (n=4). Both SAN macro- (slow-fast; 16–28 mm) and micro-reentry (1–3 mm) were observed in 60% of the MI preparations during moderate autonomic stimulation (acetylcholine [0.1 µmol/L] or isoproterenol [0.01–0.1 µmol/L]) after termination of atrial tachypacing (5–8 Hz), a finding not seen in controls. The autonomic stimulation induced heterogeneous changes in the SAN refractoriness; thus, competing atrial or SAN pacemaker waves could produce unidirectional blocks and initiate intranodal micro-reentry. The micro-reentry pivot waves were anchored to the longitudinal block region and produced both tachycardia and paradoxical bradycardia (due to exit block), despite an atrial ECG morphology identical to regular sinus rhythm. Intranodal longitudinal conduction blocks coincided with interstitial fibrosis strands that were exaggerated in the MI SAN pacemaker complex (fibrosis density: 37±7% MI versus 23±6% control; P <0.001). Conclusions— Both tachy- and brady-arrhythmias can result from SAN micro-reentry. Postinfarction remodeling, including increased intranodal fibrosis and heterogeneity of refractoriness, provides substrates for SAN reentry.


Journal of Cardiovascular Electrophysiology | 2014

Ibandronate and ventricular arrhythmia risk.

Ingrid M. Bonilla; Pedro Vargas-Pinto; Yoshinori Nishijima; Adriana Pedraza-Toscano; Hsiang-Ting Ho; Victor P. Long; Andriy E. Belevych; Patric Glynn; Mahmoud Houmsse; Troy Rhodes; Raul Weiss; Thomas J. Hund; Robert L. Hamlin; Sandor Gyorke; Cynthia A. Carnes

Bisphosphonates, including ibandronate, are used in the prevention and treatment of osteoporosis.


Life Sciences | 2015

Heart failure duration progressively modulates the arrhythmia substrate through structural and electrical remodeling

Victor P. Long; Ingrid M. Bonilla; Pedro Vargas-Pinto; Yoshinori Nishijima; Arun Sridhar; Chun Li; Kent Mowrey; Patrick J. Wright; Murugesan Velayutham; Sanjay Kumar; Nam Y. Lee; Jay L. Zweier; Peter J. Mohler; Sandor Gyorke; Cynthia A. Carnes

AIMS Ventricular arrhythmias are a common cause of death in patients with heart failure (HF). Structural and electrical abnormalities in the heart provide a substrate for such arrhythmias. Canine tachypacing-induced HF models of 4-6 weeks duration are often used to study pathophysiology and therapies for HF. We hypothesized that a chronic canine model of HF would result in greater electrical and structural remodeling than a short term model, leading to a more arrhythmogenic substrate. MAIN METHODS HF was induced by ventricular tachypacing for one (short-term) or four (chronic) months to study remodeling. KEY FINDINGS Left ventricular contractility was progressively reduced, while ventricular hypertrophy and interstitial fibrosis were evident at 4 month but not 1 month of HF. Left ventricular myocyte action potentials were prolonged after 4 (p<0.05) but not 1 month of HF. Repolarization instability and early afterdepolarizations were evident only after 4 months of HF (p<0.05), coinciding with a prolonged QTc interval (p<0.05). The transient outward potassium current was reduced in both HF groups (p<0.05). The outward component of the inward rectifier potassium current was reduced only in the 4 month HF group (p<0.05). The delayed rectifier potassium currents were reduced in 4 (p<0.05) but not 1 month of HF. Reactive oxygen species were increased at both 1 and 4 months of HF (p<0.05). SIGNIFICANCE Reduced Ito, outward IK1, IKs, and IKr in HF contribute to EAD formation. Chronic, but not short term canine HF, results in the altered electrophysiology and repolarization instability characteristic of end-stage human HF.


Javma-journal of The American Veterinary Medical Association | 2014

Arterial blood pressure as a predictor of the response to fluid administration in euvolemic nonhypotensive or hypotensive isoflurane-anesthetized dogs

William W. Muir; Yukie Ueyama; Adriana Pedraza-Toscano; Pedro Vargas-Pinto; Carlos L. Delrio; Robert S. George; Bradley Youngblood; Robert L. Hamlin

OBJECTIVE To determine the effects of rapid small-volume fluid administration on arterial blood pressure measurements and associated hemodynamic variables in isoflurane-anesthetized euvolemic dogs with or without experimentally induced hypotension. DESIGN Prospective, randomized, controlled study. ANIMALS 13 healthy dogs. PROCEDURES Isoflurane-anesthetized dogs were randomly assigned to conditions of nonhypotension or hypotension (mean arterial blood pressure, 45 to 50 mm Hg) and treatment with lactated Ringers solution (LRS) or hetastarch (3 or 10 mL/kg [1.4 or 4.5 mL/lb] dose in a 5-minute period or 3 mL/kg dose in a 1-minute period [4 or 5 dogs/treatment; ≥ 10-day interval between treatments]). Hemodynamic variables were recorded before and for up to 45 minutes after fluid administration. RESULTS IV administration of 10 mL/kg doses of LRS or hetastarch in a 5-minute period increased right atrial and pulmonary arterial pressures and cardiac output (CO) when dogs were nonhypotensive or hypotensive, compared with findings before fluid administration; durations of these effects were greater after hetastarch administration. Intravenous administration of 3 mL of hetastarch/kg in a 5-minute period resulted in an increase in CO when dogs were nonhypotensive. Intravenous administration of 3 mL/kg doses of LRS or hetastarch in a 1-minute period increased right atrial pressure and CO when dogs were nonhypotensive or hypotensive. CONCLUSIONS AND CLINICAL RELEVANCE Administration of LRS or hetastarch (3 or 10 mL/kg dose in a 5-minute period or 3 mL/kg dose in a 1-minute period) improved CO in isoflurane-anesthetized euvolemic dogs with or without hypotension. Overall, arterial blood pressure measurements were a poor predictor of the hemodynamic response to fluid administration.


Frontiers in Physiology | 2016

Chronic Omega-3 Polyunsaturated Fatty Acid Treatment Variably Affects Cellular Repolarization in a Healed Post-MI Arrhythmia Model

Ingrid M. Bonilla; Yoshinori Nishijima; Pedro Vargas-Pinto; Stephen H. Baine; Arun Sridhar; Chun Li; George E. Billman; Cynthia A. Carnes

Introduction: Over the last 40 years omega-3 polyunsaturated fatty acids (PUFAs) have been shown to be anti-arrhythmic or pro-arrhythmic depending on the method and duration of administration and model studied. We previously reported that omega-3 PUFAs do not confer anti-arrhythmic properties and are pro-arrhythmic in canine model of sudden cardiac death (SCD). Here, we evaluated the effects of chronic omega-3 PUFA treatment in post-MI animals susceptible (VF+) or resistant (VF−) to ventricular tachyarrhythmias. Methods: Perforated patch clamp techniques were used to measure cardiomyocyte action potential durations (APD) at 50 and 90% repolarization and short term variability of repolarization. The early repolarizing transient outward potassium current Ito was also studied. Results: Omega-3 PUFAs prolonged the action potential in VF− myocytes at both 50 and 90% repolarization. Short term variability of repolarization was increased in both untreated and treated VF− myocytes vs. controls. Ito was unaffected by omega-3 PUFA treatment. Omega-3 PUFA treatment attenuated the action potential prolongation in VF+ myocytes, but did not return repolarization to control values. Conclusions: Omega-3 PUFAs do not confer anti-arrhythmic properties in the setting of healed myocardial infarction in a canine model of SCD. In canines previously resistant to ventricular fibrillation (VF−), omega-3 PUFA treatment prolonged the action potential in VF− myocytes, and may contribute to pro-arrhythmic responses.


Circulation-arrhythmia and Electrophysiology | 2013

Sinoatrial Node Reentry in a Canine Chronic Left Ventricular Infarct ModelClinical Perspective

Alexey V. Glukhov; Lori T. Hage; Brian J. Hansen; Adriana Pedraza-Toscano; Pedro Vargas-Pinto; Robert L. Hamlin; Raul Weiss; Cynthia A. Carnes; George E. Billman; Vadim V. Fedorov

Background— Reentrant arrhythmias involving the sinoatrial node (SAN), namely SAN reentry, remain one of the most intriguing enigmas of cardiac electrophysiology. The goal of the present study was to elucidate the mechanism of SAN micro-reentry in canine hearts with post–myocardial infarction (MI) structural remodeling. Methods and Results— In vivo, Holter monitoring revealed ventricular arrhythmias and SAN dysfunctions in post–left ventricular MI (6–15 weeks) dogs (n=5) compared with control dogs (n=4). In vitro, high-resolution near-infrared optical mapping of intramural SAN activation was performed in coronary perfused atrial preparations from MI (n=5) and controls (n=4). Both SAN macro- (slow-fast; 16–28 mm) and micro-reentry (1–3 mm) were observed in 60% of the MI preparations during moderate autonomic stimulation (acetylcholine [0.1 µmol/L] or isoproterenol [0.01–0.1 µmol/L]) after termination of atrial tachypacing (5–8 Hz), a finding not seen in controls. The autonomic stimulation induced heterogeneous changes in the SAN refractoriness; thus, competing atrial or SAN pacemaker waves could produce unidirectional blocks and initiate intranodal micro-reentry. The micro-reentry pivot waves were anchored to the longitudinal block region and produced both tachycardia and paradoxical bradycardia (due to exit block), despite an atrial ECG morphology identical to regular sinus rhythm. Intranodal longitudinal conduction blocks coincided with interstitial fibrosis strands that were exaggerated in the MI SAN pacemaker complex (fibrosis density: 37±7% MI versus 23±6% control; P<0.001). Conclusions— Both tachy- and brady-arrhythmias can result from SAN micro-reentry. Postinfarction remodeling, including increased intranodal fibrosis and heterogeneity of refractoriness, provides substrates for SAN reentry.Background— Reentrant arrhythmias involving the sinoatrial node (SAN), namely SAN reentry, remain one of the most intriguing enigmas of cardiac electrophysiology. The goal of the present study was to elucidate the mechanism of SAN micro-reentry in canine hearts with post–myocardial infarction (MI) structural remodeling. Methods and Results— In vivo, Holter monitoring revealed ventricular arrhythmias and SAN dysfunctions in post–left ventricular MI (6–15 weeks) dogs (n=5) compared with control dogs (n=4). In vitro, high-resolution near-infrared optical mapping of intramural SAN activation was performed in coronary perfused atrial preparations from MI (n=5) and controls (n=4). Both SAN macro- (slow-fast; 16–28 mm) and micro-reentry (1–3 mm) were observed in 60% of the MI preparations during moderate autonomic stimulation (acetylcholine [0.1 µmol/L] or isoproterenol [0.01–0.1 µmol/L]) after termination of atrial tachypacing (5–8 Hz), a finding not seen in controls. The autonomic stimulation induced heterogeneous changes in the SAN refractoriness; thus, competing atrial or SAN pacemaker waves could produce unidirectional blocks and initiate intranodal micro-reentry. The micro-reentry pivot waves were anchored to the longitudinal block region and produced both tachycardia and paradoxical bradycardia (due to exit block), despite an atrial ECG morphology identical to regular sinus rhythm. Intranodal longitudinal conduction blocks coincided with interstitial fibrosis strands that were exaggerated in the MI SAN pacemaker complex (fibrosis density: 37±7% MI versus 23±6% control; P <0.001). Conclusions— Both tachy- and brady-arrhythmias can result from SAN micro-reentry. Postinfarction remodeling, including increased intranodal fibrosis and heterogeneity of refractoriness, provides substrates for SAN reentry.


Circulation-arrhythmia and Electrophysiology | 2013

Sinoatrial Node Reentry in a Canine Chronic Left Ventricular Infarct ModelClinical Perspective: Role of Intranodal Fibrosis and Heterogeneity of Refractoriness

Alexey V. Glukhov; Lori T. Hage; Brian J. Hansen; Adriana Pedraza-Toscano; Pedro Vargas-Pinto; Robert L. Hamlin; Raul Weiss; Cynthia A. Carnes; George E. Billman; Vadim V. Fedorov

Background— Reentrant arrhythmias involving the sinoatrial node (SAN), namely SAN reentry, remain one of the most intriguing enigmas of cardiac electrophysiology. The goal of the present study was to elucidate the mechanism of SAN micro-reentry in canine hearts with post–myocardial infarction (MI) structural remodeling. Methods and Results— In vivo, Holter monitoring revealed ventricular arrhythmias and SAN dysfunctions in post–left ventricular MI (6–15 weeks) dogs (n=5) compared with control dogs (n=4). In vitro, high-resolution near-infrared optical mapping of intramural SAN activation was performed in coronary perfused atrial preparations from MI (n=5) and controls (n=4). Both SAN macro- (slow-fast; 16–28 mm) and micro-reentry (1–3 mm) were observed in 60% of the MI preparations during moderate autonomic stimulation (acetylcholine [0.1 µmol/L] or isoproterenol [0.01–0.1 µmol/L]) after termination of atrial tachypacing (5–8 Hz), a finding not seen in controls. The autonomic stimulation induced heterogeneous changes in the SAN refractoriness; thus, competing atrial or SAN pacemaker waves could produce unidirectional blocks and initiate intranodal micro-reentry. The micro-reentry pivot waves were anchored to the longitudinal block region and produced both tachycardia and paradoxical bradycardia (due to exit block), despite an atrial ECG morphology identical to regular sinus rhythm. Intranodal longitudinal conduction blocks coincided with interstitial fibrosis strands that were exaggerated in the MI SAN pacemaker complex (fibrosis density: 37±7% MI versus 23±6% control; P<0.001). Conclusions— Both tachy- and brady-arrhythmias can result from SAN micro-reentry. Postinfarction remodeling, including increased intranodal fibrosis and heterogeneity of refractoriness, provides substrates for SAN reentry.Background— Reentrant arrhythmias involving the sinoatrial node (SAN), namely SAN reentry, remain one of the most intriguing enigmas of cardiac electrophysiology. The goal of the present study was to elucidate the mechanism of SAN micro-reentry in canine hearts with post–myocardial infarction (MI) structural remodeling. Methods and Results— In vivo, Holter monitoring revealed ventricular arrhythmias and SAN dysfunctions in post–left ventricular MI (6–15 weeks) dogs (n=5) compared with control dogs (n=4). In vitro, high-resolution near-infrared optical mapping of intramural SAN activation was performed in coronary perfused atrial preparations from MI (n=5) and controls (n=4). Both SAN macro- (slow-fast; 16–28 mm) and micro-reentry (1–3 mm) were observed in 60% of the MI preparations during moderate autonomic stimulation (acetylcholine [0.1 µmol/L] or isoproterenol [0.01–0.1 µmol/L]) after termination of atrial tachypacing (5–8 Hz), a finding not seen in controls. The autonomic stimulation induced heterogeneous changes in the SAN refractoriness; thus, competing atrial or SAN pacemaker waves could produce unidirectional blocks and initiate intranodal micro-reentry. The micro-reentry pivot waves were anchored to the longitudinal block region and produced both tachycardia and paradoxical bradycardia (due to exit block), despite an atrial ECG morphology identical to regular sinus rhythm. Intranodal longitudinal conduction blocks coincided with interstitial fibrosis strands that were exaggerated in the MI SAN pacemaker complex (fibrosis density: 37±7% MI versus 23±6% control; P <0.001). Conclusions— Both tachy- and brady-arrhythmias can result from SAN micro-reentry. Postinfarction remodeling, including increased intranodal fibrosis and heterogeneity of refractoriness, provides substrates for SAN reentry.


Journal of the American College of Cardiology | 2010

NON-INVASIVE IMAGING OF THE LOCALIZATION AND TIME COURSE OF CELL DEATH IN A CANINE MODEL OF ACUTE MYOCARDIAL INFARCTION AND REPERFUSION: DEMONSTRATION OF EARLY AND LATE PHASES OF REPERFUSION CELL DEATH

Patrick Burns; Patrick Kearns; Pedro Vargas-Pinto; Yoshinori Nishijima; Yu Ding; Mihaela Jekic; Tam Tran; Jiarui Lian; Kun Huang; Orlando P. Simonetti; Jay L. Zweier

Methods: The left anterior descending artery (LAD) was occluded using a 3 mm PTCA balloon catheter (n = 12). A constant gadolinium (Gd) infusion was administered during MRI to assess MI. Regional myocardial signal enhancement and function were recorded every 10 min during 90 min of ischemia followed by 120 min of R, and again at 24 and 48 hr post R. A catheter was inserted into the coronary sinus to measure creatine kinase (CK) leak across the coronary circulation.

Collaboration


Dive into the Pedro Vargas-Pinto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vadim V. Fedorov

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey V. Glukhov

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge