Peep Palumaa
Tallinn University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peep Palumaa.
Nature | 2010
Lucia Banci; Ivano Bertini; Simone Ciofi-Baffoni; Tatiana Kozyreva; Kairit Zovo; Peep Palumaa
Copper is an essential trace element for eukaryotes and most prokaryotes. However, intracellular free copper must be strictly limited because of its toxic side effects. Complex systems for copper trafficking evolved to satisfy cellular requirements while minimizing toxicity. The factors driving the copper transfer between protein partners along cellular copper routes are, however, not fully rationalized. Until now, inconsistent, scattered and incomparable data on the copper-binding affinities of copper proteins have been reported. Here we determine, through a unified electrospray ionization mass spectrometry (ESI-MS)-based strategy, in an environment that mimics the cellular redox milieu, the apparent Cu(I)-binding affinities for a representative set of intracellular copper proteins involved in enzymatic redox catalysis, in copper trafficking to and within various cellular compartments, and in copper storage. The resulting thermodynamic data show that copper is drawn to the enzymes that require it by passing from one copper protein site to another, exploiting gradients of increasing copper-binding affinity. This result complements the finding that fast copper-transfer pathways require metal-mediated protein–protein interactions and therefore protein–protein specific recognition. Together with Cu,Zn-SOD1, metallothioneins have the highest affinity for copper(I), and may play special roles in the regulation of cellular copper distribution; however, for kinetic reasons they cannot demetallate copper enzymes. Our study provides the thermodynamic basis for the kinetic processes that lead to the distribution of cellular copper.
Journal of Neurochemistry | 2008
Vello Tõugu; Ann Karafin; Peep Palumaa
There is evidence that binding of metal ions like Zn2+ and Cu2+ to amyloid beta‐peptides (Αβ) may contribute to the pathogenesis of Alzheimer’s disease. Cu2+ and Zn2+ form complexes with Αβ peptides in vitro; however, the published metal‐binding affinities of Αβ vary in an enormously large range. We studied the interactions of Cu2+ and Zn2+ with monomeric Αβ40 under different conditions using intrinsic Αβ fluorescence and metal‐selective fluorescent dyes. We showed that Cu2+ forms a stable and soluble 1 : 1 complex with Αβ40, however, buffer compounds act as competitive copper‐binding ligands and affect the apparent KD. Buffer‐independent conditional KD for Cu(II)‐Αβ40 complex at pH 7.4 is equal to 0.035 μmol/L. Interaction of Αβ40 with Zn2+ is more complicated as partial aggregation of the peptide occurs during zinc titration experiment and in the same time period (within 30 min) the initial Zn‐Αβ40 complex (KD = 60 μmol/L) undergoes a transition to a more tight complex with KD ∼ 2 μmol/L Competition of Αβ40 with ion‐selective fluorescent dyes Phen Green and Zincon showed that the KD values determined from intrinsic fluorescence of Αβ correspond to the binding of the first Cu2+ and Zn2+ ions to the peptide with the highest affinity. Interaction of both Zn2+ and Cu2+ ions with Αβ peptides may occur in brain areas affected by Alzheimer’s disease and Zn2+‐induced transition in the peptide structure might contribute to amyloid plaque formation.
Journal of Neurochemistry | 2009
Vello Tõugu; Ann Karafin; Kairit Zovo; Roger S. Chung; Claire Howells; Ak West; Peep Palumaa
Aggregation of amyloid‐β (Aβ) peptides is a central phenomenon in Alzheimer’s disease. Zn(II) and Cu(II) have profound effects on Aβ aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Aβ42 fibrillization and initiate formation of non‐fibrillar Aβ42 aggregates, and that the inhibitory effect of Zn(II) (IC50 = 1.8 μmol/L) is three times stronger than that of Cu(II). Medium and high‐affinity metal chelators including metallothioneins prevented metal‐induced Aβ42 aggregation. Moreover, their addition to preformed aggregates initiated fast Aβ42 fibrillization. Upon prolonged incubation the metal‐induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Aβ42. H13A and H14A mutations in Aβ42 reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross‐β core structure within region 10–23 of the amyloid fibril. Cu(II)‐Aβ42 aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)‐Aβ42 aggregates were non‐toxic. Disturbed metal homeostasis in the vicinity of zinc‐enriched neurons might pre‐dispose formation of metal‐induced Aβ aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal‐chelating therapies for Alzheimer’s disease is discussed in this light.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Lucia Banci; Ivano Bertini; Simone Ciofi-Baffoni; Theodoros Hadjiloi; Manuele Martinelli; Peep Palumaa
The human protein Cox17 contains three pairs of cysteines. In the mitochondrial intermembrane space (IMS) it exists in a partially oxidized form with two S–S bonds and two reduced cysteines (HCox172S-S). HCox172S-S is involved in copper transfer to the human cochaperones Sco1 and Cox11, which are implicated in the assembly of cytochrome c oxidase. We show here that Cu(I)HCox172S-S, i.e., the copper-loaded form of the protein, can transfer simultaneously copper(I) and two electrons to the human cochaperone Sco1 (HSco1) in the oxidized state, i.e., with its metal-binding cysteines forming a disulfide bond. The result is Cu(I)HSco1 and the fully oxidized apoHCox173S-S, which can be then reduced by glutathione to apoHCox172S-S. The HSco1/HCox172S-S redox reaction is thermodynamically driven by copper transfer. These reactions may occur in vivo because HSco1 can be found in the partially oxidized state within the IMS, consistent with the variable redox properties of the latter compartment. The electron transfer-coupled metallation of HSco1 can be a mechanism within the IMS for an efficient specific transfer of the metal to proteins, where metal-binding thiols are oxidized. The same reaction of copper–electron-coupled transfer does not occur with the human homolog of Sco1, HSco2, for kinetic reasons that may be ascribed to the lack of a specific metal-bridged protein–protein complex, which is instead observed in the Cu(I)HCox172S-S/HSco1 interaction.
Journal of Biological Chemistry | 2008
Lucia Banci; Ivano Bertini; Simone Ciofi-Baffoni; Anna Janicka; Manuele Martinelli; Henryk Kozlowski; Peep Palumaa
Human Cox17 is a key mitochondrial copper chaperone responsible for supplying copper ions, through the assistance of Sco1, Sco2, and Cox11, to cytochrome c oxidase, the terminal enzyme of the mitochondrial energy transducing respiratory chain. A structural and dynamical characterization of human Cox17 in its various functional metallated and redox states is presented here. The NMR solution structure of the partially oxidized Cox17 (Cox172S-S) consists of a coiled coil-helix-coiled coil-helix domain stabilized by two disulfide bonds involving Cys25-Cys54 and Cys35-Cys44, preceded by a flexible and completely unstructured N-terminal tail. In human Cu(I)Cox172S-S the copper(I) ion is coordinated by the sulfurs of Cys22 and Cys23, and this is the first example of a Cys-Cys binding motif in copper proteins. Copper(I) binding as well as the formation of a third disulfide involving Cys22 and Cys23 cause structural and dynamical changes only restricted to the metal-binding region. Redox properties of the disulfides of human Cox17, here investigated, strongly support the current hypothesis that the unstructured fully reduced Cox17 protein is present in the cytoplasm and enters the intermembrane space (IMS) where is then oxidized by Mia40 to Cox172S-S, thus becoming partially structured and trapped into the IMS. Cox172S-S is the functional species in the IMS, it can bind only one copper(I) ion and is then ready to enter the pathway of copper delivery to cytochrome c oxidase. The copper(I) form of Cox172S-S has features specific for copper chaperones.
Biochemical Journal | 2004
Peep Palumaa; Liina Kangur; Anastassia Voronova; Rannar Sillard
Cox17, a copper chaperone for cytochrome c oxidase, is an essential and highly conserved protein. The structure and mechanism of functioning of Cox17 are unknown, and even its metalbinding stoichiometry is elusive. In the present study, we demonstrate, using electrospray ionization-MS, that porcine Cox17 binds co-operatively four Cu+ ions. Cu4Cox17 is stable at pH values above 3 and fluorescence spectra indicate the presence of a solvent-shielded multinuclear Cu(I) cluster. Combining our results with earlier EXAFS results on yeast CuCox17, we suggest that Cu4Cox17 contains a Cu4S6-type cluster. At supramillimolar concentrations, dithiothreitol extracts metals from Cu4Cox17, and an apparent copper dissociation constant KCu=13 fM was calculated from these results. Charge-state distributions of different Cox17 forms suggest that binding of the first Cu+ ion to Cox17 causes a conformational change from an open to a compact state, which may be the rate-limiting step in the formation of Cu4Cox17. Cox17 binds non-co-operatively two Zn2+ ions, but does not bind Ag+ ions, which highlights its extremely high metal-binding specificity. We further demonstrate that porcine Cox17 can also exist in partly oxidized (two disulphide bridges) and fully oxidized (three disulphide bridges) forms. Partly oxidized Cox17 can bind one Cu+ or Zn2+ ion, whereas fully oxidized Cox17 does not bind metals. The metal-binding properties of Cox17 imply that, in contrast with other copper chaperones, Cox17 is designed for the simultaneous transfer of up to four copper ions to partner proteins. Metals can be released from Cox17 by non-oxidative as well as oxidative mechanisms.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Lucia Banci; Ivano Bertini; Francesca Cantini; Tatiana Kozyreva; Chiara Massagni; Peep Palumaa; Jeffrey T. Rubino; Kairit Zovo
Copper chaperone for superoxide dismutase 1 (SOD1), CCS, is the physiological partner for the complex mechanism of SOD1 maturation. We report an in vitro model for human CCS-dependent SOD1 maturation based on the study of the interactions of human SOD1 (hSOD1) with full-length WT human CCS (hCCS), as well as with hCCS mutants and various truncated constructs comprising one or two of the protein’s three domains. The synergy between electrospray ionization mass spectrometry (ESI-MS) and NMR is fully exploited. This is an in vitro study of this process at the molecular level. Domain 1 of hCCS is necessary to load hSOD1 with Cu(I), requiring the heterodimeric complex formation with hSOD1 fostered by the interaction with domain 2. Domain 3 is responsible for the catalytic formation of the hSOD1 Cys-57–Cys-146 disulfide bond, which involves both hCCS Cys-244 and Cys-246 via disulfide transfer.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Lucia Banci; Ivano Bertini; Simone Ciofi-Baffoni; Iliana Leontari; Manuele Martinelli; Peep Palumaa; Rannar Sillard; Shenlin Wang
The pathogenic mutant (P174L) of human Sco1 produces respiratory chain deficiency associated with cytochrome c oxidase (CcO) assembly defects. The solution structure of the mutant in its Cu(I) form shows that Leu-174 prevents the formation of a well packed hydrophobic region around the metal-binding site and causes a reduction of the affinity of copper(I) for the protein. KD values for Cu(I)WT-HSco1 and Cu(I)P174L-HSco1 are ≈10−17 and ≈10−13, respectively. The reduction potentials of the two apo proteins are similar, but slower reduction/oxidation rates are found for the mutant with respect to the WT. The mitochondrial metallochaperone in the partially oxidized Cu1(I)Cox172S-S form, at variance with the fully reduced Cu4(I)Cox17, interacts transiently with both WT-HSco1 and the mutant, forming the Cox17/Cu(I)/HSco1 complex, but copper is efficiently transferred only in the case of WT protein. Cu1(I)Cox172S-S indeed has an affinity for copper(I) (KD ≈ 10−15) higher than that of the P174L-HSco1 mutant but lower than that of WT-HSco1. We propose that HSco1 mutation, altering the structure around the metal-binding site, affects both copper(I) binding and redox properties of the protein, thus impairing the efficiency of copper transfer to CcO. The pathogenic mutation therefore could (i) lessen the Sco1 affinity for copper(I) and hence copper supply for CcO or (ii) decrease the efficiency of reduction of CcO thiols involved in copper binding, or both effects could be produced by the mutation.
PLOS ONE | 2010
Roger S. Chung; Claire Howells; Emma D. Eaton; Lana Shabala; Kairit Zovo; Peep Palumaa; Rannar Sillard; Adele Woodhouse; William R. Bennett; Shannon Ray; Jc Vickers; Ak West
Background A major pathological hallmark of AD is the deposition of insoluble extracellular β-amyloid (Aβ) plaques. There are compelling data suggesting that Aβ aggregation is catalysed by reaction with the metals zinc and copper. Methodology/Principal Findings We now report that the major human-expressed metallothionein (MT) subtype, MT-2A, is capable of preventing the in vitro copper-mediated aggregation of Aβ1–40 and Aβ1–42. This action of MT-2A appears to involve a metal-swap between Zn7MT-2A and Cu(II)-Aβ, since neither Cu10MT-2A or carboxymethylated MT-2A blocked Cu(II)-Aβ aggregation. Furthermore, Zn7MT-2A blocked Cu(II)-Aβ induced changes in ionic homeostasis and subsequent neurotoxicity of cultured cortical neurons. Conclusions/Significance These results indicate that MTs of the type represented by MT-2A are capable of protecting against Aβ aggregation and toxicity. Given the recent interest in metal-chelation therapies for AD that remove metal from Aβ leaving a metal-free Aβ that can readily bind metals again, we believe that MT-2A might represent a different therapeutic approach as the metal exchange between MT and Aβ leaves the Aβ in a Zn-bound, relatively inert form.
Biochemical Journal | 2007
Anastassia Voronova; Wolfram Meyer-Klaucke; Thomas Meyer; Annette Rompel; Bernt Krebs; Jekaterina Kazantseva; Rannar Sillard; Peep Palumaa
Cox17, a copper chaperone for cytochrome-c oxidase, is an essential and highly conserved protein in eukaryotic organisms. Yeast and mammalian Cox17 share six conserved cysteine residues, which are involved in complex redox reactions as well as in metal binding and transfer. Mammalian Cox17 exists in three oxidative states, each characterized by distinct metal-binding properties: fully reduced mammalian Cox17(0S-S) binds co-operatively to four Cu+; Cox17(2S-S), with two disulfide bridges, binds to one of either Cu+ or Zn2+; and Cox17(3S-S), with three disulfide bridges, does not bind to any metal ions. The E(m) (midpoint redox potential) values for two redox couples of Cox17, Cox17(3S-S)<-->Cox17(2S-S) (E(m1)) and Cox17(2S-S)<-->Cox17(0S-S) (E(m2)), were determined to be -197 mV and -340 mV respectively. The data indicate that an equilibrium exists in the cytosol between Cox17(0S-S) and Cox17(2S-S), which is slightly shifted towards Cox17(0S-S). In the IMS (mitochondrial intermembrane space), the equilibrium is shifted towards Cox17(2S-S), enabling retention of Cox17(2S-S) in the IMS and leading to the formation of a biologically competent form of the Cox17 protein, Cox17(2S-S), capable of copper transfer to the copper chaperone Sco1. XAS (X-ray absorption spectroscopy) determined that Cu4Cox17 contains a Cu4S6-type copper-thiolate cluster, which may provide safe storage of an excess of copper ions.