Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peer Bork is active.

Publication


Featured researches published by Peer Bork.


Nature Methods | 2010

A method and server for predicting damaging missense mutations

Ivan Adzhubei; Steffen Schmidt; Leonid Peshkin; Vasily Ramensky; Anna Gerasimova; Peer Bork; Alexey S. Kondrashov; Shamil R. Sunyaev

To the Editor: Applications of rapidly advancing sequencing technologies exacerbate the need to interpret individual sequence variants. Sequencing of phenotyped clinical subjects will soon become a method of choice in studies of the genetic causes of Mendelian and complex diseases. New exon capture techniques will direct sequencing efforts towards the most informative and easily interpretable protein-coding fraction of the genome. Thus, the demand for computational predictions of the impact of protein sequence variants will continue to grow. Here we present a new method and the corresponding software tool, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), which is different from the early tool PolyPhen1 in the set of predictive features, alignment pipeline, and the method of classification (Fig. 1a). PolyPhen-2 uses eight sequence-based and three structure-based predictive features (Supplementary Table 1) which were selected automatically by an iterative greedy algorithm (Supplementary Methods). Majority of these features involve comparison of a property of the wild-type (ancestral, normal) allele and the corresponding property of the mutant (derived, disease-causing) allele, which together define an amino acid replacement. Most informative features characterize how well the two human alleles fit into the pattern of amino acid replacements within the multiple sequence alignment of homologous proteins, how distant the protein harboring the first deviation from the human wild-type allele is from the human protein, and whether the mutant allele originated at a hypermutable site2. The alignment pipeline selects the set of homologous sequences for the analysis using a clustering algorithm and then constructs and refines their multiple alignment (Supplementary Fig. 1). The functional significance of an allele replacement is predicted from its individual features (Supplementary Figs. 2–4) by Naive Bayes classifier (Supplementary Methods). Figure 1 PolyPhen-2 pipeline and prediction accuracy. (a) Overview of the algorithm. (b) Receiver operating characteristic (ROC) curves for predictions made by PolyPhen-2 using five-fold cross-validation on HumDiv (red) and HumVar3 (light green). UniRef100 (solid ... We used two pairs of datasets to train and test PolyPhen-2. We compiled the first pair, HumDiv, from all 3,155 damaging alleles with known effects on the molecular function causing human Mendelian diseases, present in the UniProt database, together with 6,321 differences between human proteins and their closely related mammalian homologs, assumed to be non-damaging (Supplementary Methods). The second pair, HumVar3, consists of all the 13,032 human disease-causing mutations from UniProt, together with 8,946 human nsSNPs without annotated involvement in disease, which were treated as non-damaging. We found that PolyPhen-2 performance, as presented by its receiver operating characteristic curves, was consistently superior compared to PolyPhen (Fig. 1b) and it also compared favorably with the three other popular prediction tools4–6 (Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieves the rate of true positive predictions of 92% and 73% on HumDiv and HumVar, respectively (Supplementary Table 2). One reason for a lower accuracy of predictions on HumVar is that nsSNPs assumed to be non-damaging in HumVar contain a sizable fraction of mildly deleterious alleles. In contrast, most of amino acid replacements assumed non-damaging in HumDiv must be close to selective neutrality. Because alleles that are even mildly but unconditionally deleterious cannot be fixed in the evolving lineage, no method based on comparative sequence analysis is ideal for discriminating between drastically and mildly deleterious mutations, which are assigned to the opposite categories in HumVar. Another reason is that HumDiv uses an extra criterion to avoid possible erroneous annotations of damaging mutations. For a mutation, PolyPhen-2 calculates Naive Bayes posterior probability that this mutation is damaging and reports estimates of false positive (the chance that the mutation is classified as damaging when it is in fact non-damaging) and true positive (the chance that the mutation is classified as damaging when it is indeed damaging) rates. A mutation is also appraised qualitatively, as benign, possibly damaging, or probably damaging (Supplementary Methods). The user can choose between HumDiv- and HumVar-trained PolyPhen-2. Diagnostics of Mendelian diseases requires distinguishing mutations with drastic effects from all the remaining human variation, including abundant mildly deleterious alleles. Thus, HumVar-trained PolyPhen-2 should be used for this task. In contrast, HumDiv-trained PolyPhen-2 should be used for evaluating rare alleles at loci potentially involved in complex phenotypes, dense mapping of regions identified by genome-wide association studies, and analysis of natural selection from sequence data, where even mildly deleterious alleles must be treated as damaging.


Nature | 2010

A human gut microbial gene catalogue established by metagenomic sequencing

Junjie Qin; Ruiqiang Li; Jeroen Raes; Manimozhiyan Arumugam; Kristoffer Sølvsten Burgdorf; Chaysavanh Manichanh; Trine Nielsen; Nicolas Pons; Florence Levenez; Takuji Yamada; Daniel R. Mende; Junhua Li; Junming Xu; Shaochuan Li; Dongfang Li; Jianjun Cao; Bo Wang; Huiqing Liang; Huisong Zheng; Yinlong Xie; Julien Tap; Patricia Lepage; Marcelo Bertalan; Jean-Michel Batto; Torben Hansen; Denis Le Paslier; Allan Linneberg; H. Bjørn Nielsen; Eric Pelletier; Pierre Renault

To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ∼150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.


Nature | 2002

Functional organization of the yeast proteome by systematic analysis of protein complexes

Anne-Claude Gavin; Markus Bösche; Roland Krause; Paola Grandi; Martina Marzioch; Andreas Bauer; Jörg Schultz; Jens Rick; Anne-Marie Michon; Cristina-Maria Cruciat; Marita Remor; Christian Höfert; Malgorzata Schelder; Miro Brajenovic; Heinz Ruffner; Alejandro Merino; Karin Klein; Manuela Hudak; David Dickson; Tatjana Rudi; Volker Gnau; Angela Bauch; Sonja Bastuck; Bettina Huhse; Christina Leutwein; Marie-Anne Heurtier; Richard R. Copley; Angela Edelmann; Erich Querfurth; Vladimir Rybin

Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.


Nature | 2011

Enterotypes of the human gut microbiome

Manimozhiyan Arumugam; Jeroen Raes; Eric Pelletier; Denis Le Paslier; Takuji Yamada; Daniel R. Mende; Gabriel da Rocha Fernandes; Julien Tap; Thomas Brüls; Jean-Michel Batto; Marcelo Bertalan; Natalia Borruel; Francesc Casellas; Leyden Fernandez; Laurent Gautier; Torben Hansen; Masahira Hattori; Tetsuya Hayashi; Michiel Kleerebezem; Ken Kurokawa; Marion Leclerc; Florence Levenez; Chaysavanh Manichanh; H. Bjørn Nielsen; Trine Nielsen; Nicolas Pons; Julie Poulain; Junjie Qin; Thomas Sicheritz-Pontén; Sebastian Tims

Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host–microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.


Nucleic Acids Research | 2015

STRING v10: protein-protein interaction networks, integrated over the tree of life.

Damian Szklarczyk; Andrea Franceschini; Stefan Wyder; Kristoffer Forslund; Davide Heller; Jaime Huerta-Cepas; Milan Simonovic; Alexander Roth; Alberto Santos; Kalliopi Tsafou; Michael Kuhn; Peer Bork; Lars Juhl Jensen; Christian von Mering

The many functional partnerships and interactions that occur between proteins are at the core of cellular processing and their systematic characterization helps to provide context in molecular systems biology. However, known and predicted interactions are scattered over multiple resources, and the available data exhibit notable differences in terms of quality and completeness. The STRING database (http://string-db.org) aims to provide a critical assessment and integration of protein–protein interactions, including direct (physical) as well as indirect (functional) associations. The new version 10.0 of STRING covers more than 2000 organisms, which has necessitated novel, scalable algorithms for transferring interaction information between organisms. For this purpose, we have introduced hierarchical and self-consistent orthology annotations for all interacting proteins, grouping the proteins into families at various levels of phylogenetic resolution. Further improvements in version 10.0 include a completely redesigned prediction pipeline for inferring protein–protein associations from co-expression data, an API interface for the R computing environment and improved statistical analysis for enrichment tests in user-provided networks.


Nucleic Acids Research | 2012

STRING v9.1: protein-protein interaction networks, with increased coverage and integration

Andrea Franceschini; Damian Szklarczyk; Sune Frankild; Michael Kuhn; Milan Simonovic; Alexander Roth; Jianyi Lin; Pablo Minguez; Peer Bork; Christian von Mering; Lars Juhl Jensen

Complete knowledge of all direct and indirect interactions between proteins in a given cell would represent an important milestone towards a comprehensive description of cellular mechanisms and functions. Although this goal is still elusive, considerable progress has been made—particularly for certain model organisms and functional systems. Currently, protein interactions and associations are annotated at various levels of detail in online resources, ranging from raw data repositories to highly formalized pathway databases. For many applications, a global view of all the available interaction data is desirable, including lower-quality data and/or computational predictions. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring interactions from one model organism to the other; and (iii) we provide users with statistical information on any functional enrichment observed in their networks.


Nucleic Acids Research | 2011

The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored

Damian Szklarczyk; Andrea Franceschini; Michael Kuhn; Milan Simonovic; Alexander Roth; Pablo Minguez; Tobias Doerks; Manuel Stark; Jean Muller; Peer Bork; Lars Juhl Jensen; Christian von Mering

An essential prerequisite for any systems-level understanding of cellular functions is to correctly uncover and annotate all functional interactions among proteins in the cell. Toward this goal, remarkable progress has been made in recent years, both in terms of experimental measurements and computational prediction techniques. However, public efforts to collect and present protein interaction information have struggled to keep up with the pace of interaction discovery, partly because protein–protein interaction information can be error-prone and require considerable effort to annotate. Here, we present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score, and accessory information such as protein domains and 3D structures is made available, all within a stable and consistent identifier space. New features in STRING include an interactive network viewer that can cluster networks on demand, updated on-screen previews of structural information including homology models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org.


Nature | 2006

Proteome survey reveals modularity of the yeast cell machinery

Anne-Claude Gavin; Patrick Aloy; Paola Grandi; Roland Krause; Markus Boesche; Martina Marzioch; Christina Rau; Lars Juhl Jensen; Sonja Bastuck; Birgit Dümpelfeld; Angela Edelmann; Marie-Anne Heurtier; Verena Hoffman; Christian Hoefert; Karin Klein; Manuela Hudak; Anne-Marie Michon; Malgorzata Schelder; Markus Schirle; Marita Remor; Tatjana Rudi; Sean D. Hooper; Andreas Bauer; Tewis Bouwmeester; Georg Casari; Gerard Drewes; Gitte Neubauer; Jens Rick; Bernhard Kuster; Peer Bork

Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.


Nature | 2002

Comparative assessment of large-scale data sets of protein–protein interactions

Christian von Mering; Roland Krause; Berend Snel; Michael Cornell; Stephen G. Oliver; Stanley Fields; Peer Bork

Comprehensive protein–protein interaction maps promise to reveal many aspects of the complex regulatory network underlying cellular function. Recently, large-scale approaches have predicted many new protein interactions in yeast. To measure their accuracy and potential as well as to identify biases, strengths and weaknesses, we compare the methods with each other and with a reference set of previously reported protein interactions.


Nature | 2005

Initial sequence of the chimpanzee genome and comparison with the human genome

Tarjei S. Mikkelsen; LaDeana W. Hillier; Evan E. Eichler; Michael C. Zody; David B. Jaffe; Shiaw-Pyng Yang; Wolfgang Enard; Ines Hellmann; Kerstin Lindblad-Toh; Tasha K. Altheide; Nicoletta Archidiacono; Peer Bork; Jonathan Butler; Jean L. Chang; Ze Cheng; Asif T. Chinwalla; Pieter J. de Jong; Kimberley D. Delehaunty; Catrina C. Fronick; Lucinda L. Fulton; Yoav Gilad; Gustavo Glusman; Sante Gnerre; Tina Graves; Toshiyuki Hayakawa; Karen E. Hayden; Xiaoqiu Huang; Hongkai Ji; W. James Kent; Mary Claire King

Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.

Collaboration


Dive into the Peer Bork's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Doerks

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Ivica Letunic

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeroen Raes

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Richard R. Copley

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martijn A. Huynen

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge