Peeraya Ekchariyawat
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peeraya Ekchariyawat.
Journal of Virology | 2015
Rodolphe Hamel; Ophélie Dejarnac; Sineewanlaya Wichit; Peeraya Ekchariyawat; Aymeric Neyret; Natthanej Luplertlop; Manuel Perera-Lecoin; Pornapat Surasombatpattana; Loïc Talignani; Frédéric Thomas; Van-Mai Cao-Lormeau; Valérie Choumet; Laurence Briant; Philippe Desprès; Ali Amara; Hans Yssel; Dorothée Missé
ABSTRACT Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. IMPORTANCE Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.
Journal of Immunology | 2007
Arunee Thitithanyanont; Anneke Engering; Peeraya Ekchariyawat; Suwimon Wiboon-ut; Amporn Limsalakpetch; Kosol Yongvanitchit; Utaiwan Kum-Arb; Watcharoot Kanchongkittiphon; Pongsak Utaisincharoen; Stitaya Sirisinha; Pilaipan Puthavathana; Mark M. Fukuda; Sathit Pichyangkul
There is worldwide concern that the avian influenza H5N1 virus, with a mortality rate of >50%, might cause the next influenza pandemic. Unlike most other influenza infections, H5N1 infection causes a systemic disease. The underlying mechanisms for this effect are still unclear. In this study, we investigate the interplay between avian influenza H5N1 and human dendritic cells (DC). We showed that H5N1 virus can infect and replicate in monocyte-derived and blood myeloid DC, leading to cell death. These results suggest that H5N1 escapes viral-specific immunity, and could disseminate via DC. In contrast, blood pDC were resistant to infection and produced high amounts of IFN-α. Addition of this cytokine to monocyte-derived DC or pretreatment with TLR ligands protected against infection and the cytopathic effects of H5N1 virus.
Infection, Genetics and Evolution | 2015
Peeraya Ekchariyawat; Rodolphe Hamel; Eric Bernard; Sineewanlaya Wichit; Pornapat Surasombatpattana; Loïc Talignani; Frédéric Thomas; Valérie Choumet; Hans Yssel; Philippe Desprès; Laurence Briant; Dorothée Missé
Arboviruses represent an emerging threat to human. They are transmitted to vertebrates by the bite of infected arthropods. Early transmission to vertebrates is initiated by skin puncture and deposition of virus in this organ. However, events at the bite site remain largely unknown. Here, we report that Chikungunya virus (CHIKV) and West Nile virus (WNV), despite belonging to distinct viral families, elicit a common antiviral signature in primary human dermal fibroblasts, attesting for the up regulation of interferon signaling pathways and leading to an increased expression of IFN-β, interleukins and chemokines. Remarkably, CHIKV and WNV enhance IL-1β expression and induce maturation of caspase-1, indicating the capacity of these pathogens to elicit activation of the inflammasome program in resident skin cells. CHIKV and WNV also induce the expression of the inflammasome sensor AIM2 in dermal fibroblasts, whereas inhibition of caspase-1 and AIM2 with siRNA interferes with both CHIKV- and WNV-induced IL-1β production by these cells. Finally, inhibition of the inflammasome via caspase-1 silencing was found to enhance CHIKV replication in dermal fibroblasts. Together, these results indicate that the skin contributes to the pro-inflammatory and anti-viral microenvironment via the activation of the inflammasome in the early stages following infection with arboviruses.
Innate Immunity | 2012
Peeraya Ekchariyawat; Arunee Thitithanyanont; Stitaya Sirisinha; Pongsak Utaisincharoen
Avian influenza virus H5N1 is a potentially fatal disease not only in birds, but also in humans. The virus is able to induce apoptosis in many cell types including macrophages and dendritic cells. In the present study, we demonstrated that TNF-related apoptosis-inducing ligand (TRAIL) is involved in apoptosis-associated mechanisms of apoptosis downstream of the TRAIL receptor in H5N1 virus-infected human monocyte-derived macrophages (MDMs). Activation of caspase-10 was also observed in avian virus H5N1-infected MDMs. In the presence of caspase-10 inhibitor, Z-AEVD-FMK, the activation of Bid and a release of apoptotic-inducing factor (AIF) from mitochondria were markedly reduced, resulting in a significant decrease of apoptotic cells which suggested the involvement of caspase-10 activation in mitochondria leakage. Furthermore, neutralizing Ab against TRAIL significantly reduced caspase-10 activities, which paralleled with a decrease in the number of apoptotic cells. Together, this study demonstrated that apoptosis in avian virus H5N1-infected MDMs was induced by TRAIL-activated caspase-10, resulting in the activation of Bid and the release of AIF from mitochondria.
Biochemical and Biophysical Research Communications | 2010
Arunee Thitithanyanont; Anneke Engering; Monkol Uiprasertkul; Peeraya Ekchariyawat; Suwimon Wiboon-ut; Romchat Kraivong; Amporn Limsalakpetch; Utaiwan Kum-Arb; Kosol Yongvanitchit; Noppadol Sa-Ard-Iam; Pimprapa Rukyen; Rangsini Mahanonda; Kamon Kawkitinarong; Prasert Auewarakul; Pongsak Utaisincharoen; Stitaya Sirisinha; Carl J. Mason; Mark M. Fukuda; Sathit Pichyangkul
Information on the immune response against H5N1 within the lung is lacking. Here we describe the sustained antiviral immune responses, as indicated by the expression of MxA protein and IFN-alpha mRNA, in autopsy lung tissue from an H5N1-infected patient. H5N1 infection of primary bronchial/tracheal epithelial cells and lung microvascular endothelial cells induced IP-10, and also up-regulated the retinoic acid-inducible gene-I (RIG-I). Down-regulation of RIG-I gene expression decreased IP-10 response. Co-culturing of H5N1-infected pulmonary cells with TNF-alpha led to synergistically enhanced production of IP-10. In the absence of viral infection, TNF-alpha and IFN-alpha also synergistically enhanced IP-10 response. Methylprednisolone showed only a partial inhibitory effect on this chemokine response. Our findings strongly suggest that both the H5N1 virus and the locally produced antiviral cytokines; IFN-alpha and TNF-alpha may have an important role in inducing IP-10 hyperresponse, leading to inflammatory damage in infected lung.
Journal of Virological Methods | 2013
Sirilaksana Patramool; Eric Bernard; Rodolphe Hamel; Luplertlop Natthanej; Nathalie Chazal; Pornapat Surasombatpattana; Peeraya Ekchariyawat; Simon Daoust; Supatra Thongrungkiat; Frédéric Thomas; Laurence Briant; Dorothée Missé
Mosquitoes-borne viruses are a major threat for human populations. Among them, chikungunya virus (CHIKV) and dengue virus (DENV) cause thousands of cases worldwide. The recent propagation of mosquito vectors competent to transmit these viruses to temperate areas increases their potential impact on susceptible human populations. The development of sensitive methods allowing the detection and isolation of infectious viruses is of crucial interest for determination of virus contamination in humans and in competent mosquito vectors. However, simple and rapid method allowing the capture of infectious CHIKV and DENV from samples with low viral titers useful for further genetic and functional characterization of circulating strains is lacking. The present study reports a fast and sensitive isolation technique based on viral particles adsorption on magnetic beads coated with anionic polymer, poly(methyl vinyl ether-maleic anhydrate) and suitable for isolation of infectious CHIKV and DENV from the four serotypes. Starting from quite reduced biological material, this method was accurate to combine with conventional detection techniques, including qRT-PCR and immunoblotting and allowed isolation of infectious particles without resorting to a step of cultivation. The use of polymer-coated magnetic beads is therefore of high interest for rapid detection and isolation of CHIKV and DENV from samples with reduced viral loads and represents an accurate approach for the surveillance of mosquito vector in area at risk for arbovirus outbreaks.
Emerging Infectious Diseases | 2009
Sathit Pichyangkul; Anan Jongkaewwattana; Arunee Thitithanyanont; Peeraya Ekchariyawat; Suwimon Wiboon-ut; Amporn Limsalakpetch; Kosol Yongvanitchit; Utaiwan Kum-Arb; Rangsini Mahanonda; Pongsak Utaisincharoen; Stitaya Sirisinha; Carl J. Mason; Mark M. Fukuda
To the Editor: Intravenous immunoglobulin (IVIg) is used to treat bacterial and viral infections in patients with primary immunodeficiency disease and those with autoimmune and inflammatory disorders (1). IVIg contains pooled IgG from >1,000 blood donors and antibodies against various common human pathogens, including influenza virus A. We tested the efficacy of commercial preparations of IVIg (50 mg/mL of highly purified immunoglobulin) against homosubtypic influenza viruses A (H1N1 and H3N2) and their cross-reactivity against avian influenza virus A (H5N1). IVIg preparations (Octagam; Octapharma, Vienna, Austria and Flebogamma; Instituto Grifols, Barcelona, Spain) had hemagglutination inhibition (HI) titers against subtypes H1N1 and H3N2 ranging from 20 to 40. Human Immunoglobulin, pH 4.0, (Harbin Sequel Bio-Engineering Pharmaceutical, Harbin, People’s Republic of China) had lower HI titers against homosubtypic avian influenza viruses (10 for subtype H3N2 and <10 for subtype H1N1). As expected, we did not detect antibodies against hemagglutinin (HA) of subtype H5N1 (A/open-billed/stork/Nahkonsawan/BBD0104F/2004) in any of the IVIg preparations (HI titer <10). Human influenza subtype H1N1 shares the same neuraminidase (NA) subtype (human N1) as subtype H5N1 (avian N1). We therefore tested whether IVIg preparations would react and inhibit NA activity of human and avian influenza viruses by using a neuraminidase inhibition (NI) assay (2). NI titer was defined as the reciprocal of the highest dilution that gave 50% reduction compared with that of the virus control. All 3 IVIg preparations inhibited NA activity of human N1 (NI titer against subtype H1N1 range 258–986) and human N2 (NI titer against subtype H3N2 range 1,309–3,274). Enzyme activity of avian N1 (7:1 reassortant; PR8 + NA [A/Vietnam/DT-0361/2005 H5N1]) was inhibited by all IVIg preparations (NI titer range 143–231). These findings support the recent observation of neutralizing antibodies against human N1 in human serum, which could inhibit enzyme activity of avian N1 from subtype H5N1 (3,4). We also tested IVIg preparations against reverse genetics subtype H5N3 virus in which the N3 NA was derived from H2N3 virus (6:1:1 reassortant; 6 internal genes from PR8 + HA (A/Vietnam/DT-0361/05 H5N1) + NA (A/duck/Germany 1207 H2N3) and observed no effect (NI titer <10). The N3 subtype belongs to avian influenza NA. Thus, antibodies against NA in IVIg appear to be specific for those circulating human influenza viruses (human N1 and human N2). Unlike HA and NA, virus matrix 2 ectodomain (M2e) is highly conserved. Its presence on the surface of the viral particle makes it a potential target of antibody response similar to that for HA and NA (5,6). We assessed reactivity of IVIg preparations against a consensus M2e peptide derived from human influenza viruses of H1, H2, and H3 subtypes (MSLLTEVETPIRNEWGCRCNDSSD) and those derived from A/Hong Kong/156/97 H5N1 (MSLLTEVETLTRNGWGCRCSDSSD and A/Thailand/ SP-83/2004 H5N1 (MSLLTEVETPTRNEWECRCSDSSD) by using ELISA (7). Antibody titer was defined as the reciprocal of the highest dilution that had an optical density of 0.5 at 414 nm in our assay. Results showed considerable variation among IVIg preparations, caused by M2e peptides derived from different influenza viruses (titer range 88–23,614). Among the 3 preparations, Human Immunoglobulin, pH 4.0, IVIg showed the highest titers against all M2e peptides (consensus, 9,639; H5N1 Hong Kong, 3,519; and H5N1 Thailand, 23,614). Variation of antibody titers against M2e in IVIGs may be geographically dependent. Unlike Octagam and Flebogamma, Human Immunoglobulin, pH 4.0, IVIg was likely derived from blood donors in China. Octagam and Immunoglobulin, pH 4.0, IVIg were more reactive with M2e of avian influenza virus (H5N1) (A/Thailand/SP-83/2004) than with other M2e peptides. We measured the ability of IVIg preparations to inhibit influenza subtype H5N1 replication by using a plaque-reduction assay. Subtype H5N1 (A/open-billed stork/ Nakhonsawan/BBD0104F/2004) was maintained as described (8). MDCK cells were infected with virus and agar containing various concentrations of IVIg was layered on top of these cells and incubated for 2 days. Results are shown in the Figure. IVIG inhibited plaque formation in a dose-dependent manner. Although plaques of heterogeneous size were observed in infected plates without IVIg, larger plaques were preferentially neutralized with increasing concentrations of IVIg in the agar (Figure). Figure Neutralization of avian influenza virus A (H5N1) by intravenous immunoglobulin (IVIg) preparations measured by percentage reduction in plaque number (A) and plaque size (B). Monolayers of MDCK cells were infected with virus and overlaid with agar containing ... Premixing excess M2e peptide with IVIg to absorb M2e-specific antibodies had no effect on plaque formation, indicating that antibodies against M2e in IVIg preparations were not responsible for neutralization of influenza subtype H5N1. Antibodies against M2e may have a role in protection against subtype H5N1 by another mechanism. Our data suggest that the neutralizing activity against influenza subtype H5N1 in all 3 IVIg preparations was likely contributed by cross-reactive antibodies against avian N1. IVIg has been reported to have antiinflammatory activity (9,10). The immune suppressive effect of IVIg may benefit patients by reducing the cytokine storm. These data suggest use of IVIg, especially preparations containing high neutralizing activity against subtype H5N1, as adjunctive treatment for infection with highly pathogenic avian influenza virus (H5N1).
Scientific Reports | 2017
Sineewanlaya Wichit; Rodolphe Hamel; Eric Bernard; Loïc Talignani; Fodé Diop; Pauline Ferraris; Florian Liegeois; Peeraya Ekchariyawat; Natthanej Luplertlop; Pornapat Surasombatpattana; Frédéric Thomas; Andres Merits; Valérie Choumet; Pierre Roques; Hans Yssel; Laurence Briant; Dorothée Missé
Chikungunya virus (CHIKV) is an emerging arbovirus of the Togaviridae family that poses a present worldwide threat to human in the absence of any licensed vaccine or antiviral treatment to control viral infection. Here, we show that compounds interfering with intracellular cholesterol transport have the capacity to inhibit CHIKV replication in human skin fibroblasts, a major viral entry site in the human host. Pretreatment of these cells with the class II cationic amphiphilic compound U18666A, or treatment with the FDA-approved antidepressant drug imipramine resulted in a near total inhibition of viral replication and production at the highest concentration used without any cytotoxic effects. Imipramine was found to affect both the fusion and replication steps of the viral life cycle. The key contribution of cholesterol availability to the CHIKV life cycle was validated further by the use of fibroblasts from Niemann-Pick type C (NPC) patients in which the virus was unable to replicate. Interestingly, imipramine also strongly inhibited the replication of several Flaviviridae family members, including Zika, West Nile and Dengue virus. Together, these data show that this compound is a potential drug candidate for anti-arboviral treatment.
Virology | 2015
Eric Bernard; Rodolphe Hamel; Aymeric Neyret; Peeraya Ekchariyawat; Jean-Pierre Molès; Graham Simmons; Nathalie Chazal; Philippe Desprès; Dorothée Missé; Laurence Briant
Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses.
PLOS ONE | 2017
Vichaya Suttisunhakul; Apinya Pumpuang; Peeraya Ekchariyawat; Vanaporn Wuthiekanun; Mindy G. Elrod; Paul Turner; Bart J. Currie; Rattanaphone Phetsouvanh; David A. B. Dance; Direk Limmathurotsakul; Sharon J. Peacock; Narisara Chantratita
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used for rapid bacterial identification. Studies of Burkholderia pseudomallei identification have involved small isolate numbers drawn from a restricted geographic region. There is a need to expand the reference database and evaluate B. pseudomallei from a wider geographic distribution that more fully captures the extensive genetic diversity of this species. Here, we describe the evaluation of over 650 isolates. Main spectral profiles (MSP) for 26 isolates of B. pseudomallei (N = 5) and other Burkholderia species (N = 21) were added to the Biotyper database. MALDI-TOF MS was then performed on 581 B. pseudomallei, 19 B. mallei, 6 B. thailandensis and 23 isolates representing a range of other bacterial species. B. pseudomallei originated from northeast and east Thailand (N = 524), Laos (N = 12), Cambodia (N = 14), Hong Kong (N = 4) and Australia (N = 27). All 581 B. pseudomallei were correctly identified, with 100% sensitivity and specificity. Accurate identification required a minimum inoculum of 5 x 107 CFU/ml, and identification could be performed on spiked blood cultures after 24 hours of incubation. Comparison between a dendrogram constructed from MALDI-TOF MS main spectrum profiles and a phylogenetic tree based on recA gene sequencing demonstrated that MALDI-TOF MS distinguished between B. pseudomallei and B. mallei, while the recA tree did not. MALDI-TOF MS is an accurate method for the identification of B. pseudomallei, and discriminates between this and other related Burkholderia species.