Peers Davies
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peers Davies.
Journal of Clinical Microbiology | 2016
Peers Davies; James A. Leigh; Andrew J. Bradley; Simon C. Archer; Richard D. Emes; Martin J. Green
ABSTRACT Multilocus sequence typing was successfully completed on 494 isolates of Streptococcus uberis from clinical mastitis cases in a study of 52 commercial dairy herds over a 12-month period. In total, 195 sequence types (STs) were identified. S. uberis mastitis cases that occurred in different cows within the same herd and were attributed to a common ST were classified as potential transmission events (PTEs). Clinical cases attributed to 35 of the 195 STs identified in this study were classified PTE. PTEs were identified in 63% of the herds. PTE-associated cases, which include the first recorded occurrence of that ST in that herd (index case) and all persistent infections with that PTE ST, represented 40% of all the clinical mastitis cases and occurred in 63% of the herds. PTE-associated cases accounted for >50% of all S. uberis clinical mastitis cases in 33% of the herds. Nine STs (ST-5, -6, -20, -22, -24, -35, -233, -361, and -512), eight of which were grouped within a clonal complex (sharing at least four alleles), were statistically overrepresented (OVR STs). The findings indicate that 38% of all clinical mastitis cases and 63% of the PTEs attributed to S. uberis in dairy herds may be caused by the nine most prevalent strains. The findings suggest that a small subset of STs is disproportionally important in the epidemiology of S. uberis mastitis in the United Kingdom, with cow-to-cow transmission of S. uberis potentially occurring in the majority of herds in the United Kingdom, and may be the most important route of infection in many herds.
Veterinary Record | 2017
Robert Hyde; John Remnant; Andrew J. Bradley; James Breen; Chris Hudson; Peers Davies; Tom Clarke; Yvonne Critchell; Matthew Hylands; Emily Linton; Erika Wood; Martin J. Green
Antimicrobial resistance has been reported to represent a growing threat to both human and animal health, and concerns have been raised around levels of antimicrobial usage (AMU) within the livestock industry. To provide a benchmark for dairy cattle AMU and identify factors associated with high AMU, data from a convenience sample of 358 dairy farms were analysed using both mass-based and dose-based metrics following standard methodologies proposed by the European Surveillance of Veterinary Antimicrobial Consumption project. Metrics calculated were mass (mg) of antimicrobial active ingredient per population correction unit (mg/PCU), defined daily doses (DDDvet) and defined course doses (DCDvet). AMU on dairy farms ranged from 0.36 to 97.79 mg/PCU, with a median and mean of 15.97 and 20.62 mg/PCU, respectively. Dose-based analysis ranged from 0.05 to 20.29 DDDvet, with a median and mean of 4.03 and 4.60 DDDvet, respectively. Multivariable analysis highlighted that usage of antibiotics via oral and footbath routes increased the odds of a farm being in the top quartile (>27.9 mg/PCU) of antimicrobial users. While dairy cattle farm AMU appeared to be lower than UK livestock average, there were a selection of outlying farms with extremely high AMU, with the top 25 per cent of farms contributing greater than 50 per cent of AMU by mass. Identification of these high use farms may enable targeted AMU reduction strategies and facilitate a significant reduction in overall dairy cattle AMU.
PLOS ONE | 2018
Eliana Lima; Thomas Hopkins; Emma Gurney; Orla Shortall; Fiona Lovatt; Peers Davies; George Williamson; Jasmeet Kaler
The UK is the largest lamb meat producer in Europe. However, the low profitability of sheep farming sector suggests production efficiency could be improved. Although the use of technologies such as Electronic Identification (EID) tools could allow a better use of flock resources, anecdotal evidence suggests they are not widely used. The aim of this study was to assess uptake of EID technology, and explore drivers and barriers of adoption of related tools among English and Welsh farmers. Farm beliefs and management practices associated with adoption of this technology were investigated. A total of 2000 questionnaires were sent, with a response rate of 22%. Among the respondents, 87 had adopted EID tools for recording flock information, 97 intended to adopt it in the future, and 222 neither had adopted it, neither intended to adopt it. Exploratory factor analysis (EFA) and multivariable logistic regression modelling were used to identify farmer beliefs and management practices significantly associated with adoption of EID technology. EFA identified three factors expressing farmer’s beliefs–external pressure and negative feelings, usefulness and practicality. Our results suggest farmer’s beliefs play a significant role in technology uptake. Non-adopters were more likely than adopters to believe that ‘government pressurise farmers to adopt technology’. In contrast, adopters were significantly more likely than non-adopters to see EID as practical and useful (p≤0.05). Farmers with higher information technologies literacy and intending to intensify production in the future were significantly more likely to adopt EID technology (p≤0.05). Importantly, flocks managed with EID tools had significantly lower farmer- reported flock lameness levels (p≤0.05). These findings bring insights on the dynamics of adoption of EID tools. Communicating evidence of the positive effects EID tools on flock performance and strengthening farmer’s capability in use of technology are likely to enhance the uptake of this technology in sheep farms.
Frontiers in Microbiology | 2018
Adam Blanchard; Keith A. Jolley; Martin Christopher James Maiden; Tracey J. Coffey; Grazieli Maboni; Ceri E Staley; Nicola J Bollard; Andrew Warry; Richard D. Emes; Peers Davies; Sabine Tötemeyer
Dichelobacter nodosus (D. nodosus) is the causative pathogen of ovine footrot, a disease that has a significant welfare and financial impact on the global sheep industry. Previous studies into the phylogenetics of D. nodosus have focused on Australia and Scandinavia, meaning the current diversity in the United Kingdom (U.K.) population and its relationship globally, is poorly understood. Numerous epidemiological methods are available for bacterial typing; however, few account for whole genome diversity or provide the opportunity for future application of new computational techniques. Multilocus sequence typing (MLST) measures nucleotide variations within several loci with slow accumulation of variation to enable the designation of allele numbers to determine a sequence type. The usage of whole genome sequence data enables the application of MLST, but also core and whole genome MLST for higher levels of strain discrimination with a negligible increase in experimental cost. An MLST database was developed alongside a seven loci scheme using publically available whole genome data from the sequence read archive. Sequence type designation and strain discrimination was compared to previously published data to ensure reproducibility. Multiple D. nodosus isolates from U.K. farms were directly compared to populations from other countries. The U.K. isolates define new clades within the global population of D. nodosus and predominantly consist of serogroups A, B and H, however serogroups C, D, E, and I were also found. The scheme is publically available at https://pubmlst.org/dnodosus/.
Preventive Veterinary Medicine | 2017
Simon C. Archer; Andrew J. Bradley; Selin Cooper; Peers Davies; Martin J. Green
The purpose of this study was to evaluate whether the risk of Streptococcus uberis clinical mastitis at cow level could be predicted from the historical presence of specific strains of S. uberis on dairy farms. Matrix-assisted laser desorption ionization time of flight mass spectrometry was used to identify S. uberis isolates potentially capable of contagious transmission. Data were available from 10,652 cows from 52 English and Welsh dairy farms over a 14 month period, and 521 isolates of S. uberis from clinical mastitis cases were available for analysis. As well as the temporal herd history of clinical mastitis associated with particular S. uberis strains, other exposure variables included cow parity, stage of lactation, milk yield, and somatic cell count. Observations were structured longitudinally as repeated weekly measures through the study period for each cow. Data were analyzed in a Bayesian framework using multilevel logistic regression models. Similarity of mass spectral profiles between isolates of S. uberis from consecutive clinical cases of mastitis in herds was used to indicate potential for contagious phenotypic characteristics. Cross validation showed that new isolates with these characteristics could be identified with an accuracy of 90% based on bacterial protein mass spectral characteristics alone. The cow-level risk in any week of these S. uberis clinical mastitis cases increased with the presence of the same specific strains of S. uberis in other cows in the herd during the previous 2 weeks. The final statistical model indicated there would be a 2–3 fold increase in the risk of S. uberis clinical mastitis associated with particular strains if these occurred in the herd 1 and 2 weeks previously. The results suggest that specific strains of S. uberis may be involved with contagious transmission, and predictions based on their occurrence could be used as an early warning surveillance system to enhance the control of S. uberis mastitis.
Veterinary Record | 2018
Emily Gascoigne; Fiona Lovatt; Phillipa Page; Peers Davies
Neil Williamson As committed sheep vets, we are delighted to see Vet Record devote space to a recent study on rams and their welfare in commercial flocks ( VR , 2 December 2017, vol 181, pp 583–584). With rams accounting for 50 per cent of the fertility of flocks, their performance and longevity are clear determinants of cost of production and the efficiency of commercial flocks. In particular, we would like to comment on the poor uptake of clostridial and Pasteurella vaccine as a threat to ram longevity. These vaccinations were described as prohibitively expensive for flocks when vaccinating individual rams at purchase. The authors of the reported study suggested that veterinary …
Veterinary Record | 2017
Peers Davies; John Remnant; Martin J. Green; Emily Gascoigne; Nick Gibbon; Robert Hyde; Jack R Porteous; Kiera Schubert; Fiona Lovatt; Alexander Corbishley
The aim of this study was to examine the variation in antibiotic usage between 207 commercial sheep flocks using their veterinary practice prescribing records. Mean and median prescribed mass per population corrected unit (mg/PCU) was 11.38 and 5.95, respectively and closely correlated with animal defined daily dose (ADDD) 1.47 (mean), 0.74 (median) (R2=0.84, P<0.001). This is low in comparison with the suggested target (an average across all the UK livestock sectors) of 50 mg/PCU. In total, 80 per cent of all antibiotic usage occurred in the 39 per cent of flocks where per animal usage was greater than 9.0 mg/PCU. Parenteral antibiotics, principally oxytetracycline, represented 82 per cent of the total prescribed mass, 65.5 per cent of antibiotics (mg/PCU) were prescribed for the treatment of lameness. Oral antibiotics were prescribed to 49 per cent of flocks, 64 per cent of predicted lamb crop/farm. Lowland flocks were prescribed significantly more antibiotics than hill flocks. Variance partitioning apportioned 79 per cent of variation in total antibiotic usage (mg/PCU) to the farm level and 21 per cent to the veterinary practice indicating that veterinary practices have a substantial impact on overall antimicrobial usage. Reducing antibiotic usage in the sheep sector should be possible with better understanding of the drivers of high usage in individual flocks and of veterinary prescribing practices.
Veterinary Record | 2017
Peers Davies
ANTIMICROBIAL use, and in particular, antibiotic use in farmed, food-producing species, has become the subject of increasing interest and concern over recent years. Regulatory authorities, medical practitioners, veterinary surgeons, farmers, the general public and others all have a legitimate interest in this area but priorities and perspectives can differ widely. Public health and the maintenance of antibiotic efficacy in human medicine is generally accepted to be the principal priority for society. Addressing all possible causes and sites of antibiotic or antimicrobial resistance (AMR) selection should be informed by an evidence-based, risk assessment of the most significant sources of AMR selection. Unfortunately, there are huge gaps in our knowledge which presents problems when developing effective critical control points. For example, the misuse of antibiotics in human medicine has been estimated at 38 per cent (Kardas and others 2005) and antibiotic contamination of the environment from manufacturing plants have been associated with an abundance of related resistance genes (Rutgersson and others 2014). Placing veterinary use of antibiotics in perspective with these other areas of use is important when making …
Veterinary Record | 2017
Robert Hyde; Martin J. Green; John Remnant; P.M. Down; Jon Huxley; Peers Davies; Chris Hudson; James Breen
Veterinary Record | 2017
Peers Davies