Peeter Nõges
Estonian University of Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peeter Nõges.
Geophysical Research Letters | 2015
Catherine M. O'Reilly; Sapna Sharma; Derek K. Gray; Stephanie E. Hampton; Jordan S. Read; Rex J. Rowley; Philipp Schneider; John D. Lenters; Peter B. McIntyre; Benjamin M. Kraemer; Gesa A. Weyhenmeyer; Dietmar Straile; Bo Dong; Rita Adrian; Mathew G. Allan; Orlane Anneville; Lauri Arvola; Jay A. Austin; John L. Bailey; Jill S. Baron; Justin D. Brookes; Elvira de Eyto; Martin T. Dokulil; David P. Hamilton; Karl E. Havens; Amy L. Hetherington; Scott N. Higgins; Simon J. Hook; Lyubov R. Izmest'eva; Klaus D. Joehnk
In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.
Hydrobiologia | 2011
Erik Jeppesen; Peeter Nõges; Thomas A. Davidson; Juta Haberman; Tiina Nõges; Kätlin Blank; Torben L. Lauridsen; Martin Søndergaard; Carl D. Sayer; Reet Laugaste; Liselotte S. Johansson; Rikke Bjerring; Susanne Lildal Amsinck
With the implementation of the EU Water Framework Directive (WFD), the member states have to classify the ecological status of surface waters following standardised procedures. It was a matter of some surprise to lake ecologists that zooplankton were not included as a biological quality element (BQE) despite their being considered to be an important and integrated component of the pelagic food web. To the best of our knowledge, the decision of omitting zooplankton is not wise, and it has resulted in the withdrawal of zooplankton from many so-far-solid monitoring programmes. Using examples from particularly Danish, Estonian, and the UK lakes, we show that zooplankton (sampled from the water and the sediment) have a strong indicator value, which cannot be covered by sampling fish and phytoplankton without a very comprehensive and costly effort. When selecting the right metrics, zooplankton are cost-efficient indicators of the trophic state and ecological quality of lakes. Moreover, they are important indicators of the success/failure of measures taken to bring the lakes to at least good ecological status. Therefore, we strongly recommend the EU to include zooplankton as a central BQE in the WFD assessments, and undertake similar regional calibration exercises to obtain relevant and robust metrics also for zooplankton as is being done at present in the cases of fish, phytoplankton, macrophytes and benthic invertebrates.
Hydrobiologia | 2015
Erik Jeppesen; Sandra Brucet; Luigi Naselli-Flores; Eva Papastergiadou; Kostas Stefanidis; Tiina Nõges; Peeter Nõges; José Luiz Attayde; Tamar Zohary; Jan Coppens; Tuba Bucak; Rosemberg Fernandes Menezes; Francisco Rafael Sousa Freitas; Martin Kernan; Martin Søndergaard; Meryem Beklioglu
According to the Intergovernmental Panel on Climate Change report released in September 2014, unprecedented changes in temperature and precipitation patterns have been recorded globally in recent decades and further change is predicted to occur in the near future, mainly as the result of human activity. In particular, projections show that the Mediterranean climate zone will be markedly affected with significant implications for lake water levels and salinity. This may be exacerbated by increased demands for irrigation water. Based on long-term data from seven lakes and reservoirs covering a geographical gradient of 52° of latitudes and a literature review, we discuss how changes in water level and salinity related to climate change and water abstraction affect the ecosystem structure, function, biodiversity and ecological state of lakes and reservoirs. We discuss mitigation measures to counteract the negative effects on ecological status that are likely to result from changes in climate and water abstraction practices. Finally, we highlight research required to improve knowledge of the impacts of anthropogenically induced changes on lake water level and consequent changes in salinity.
Hydrobiologia | 2003
Tiina Nõges; Peeter Nõges; Reet Laugaste
We studied the effect of water level changes in Lake Võrtsjärv (270 km2, mean depth 2.8 m) on the abundance and composition of phytoplankton based on a 35-year database. Analysis of long time-series (since 1884) revealed a strong influence of the North Atlantic Oscillation on the water level in this lake. The registered maximum range of water level in L. Võrtsjärv is 3.2 m, which corresponds to 1.4 times difference in the lake area, 2.5 times difference in the mean depth and 3.5 times difference in volume. Cyanobacteria build up 2/3 of the average phytoplankton biomass during the ice-free period (May–October). On average 75% of the cyanophyte biomass is formed by four filamentous species. Centric diatoms from the genera Aulacoseira and Cyclotella dominate in the biomass of diatoms. Phytoplankton biomass was significantly lower in years of high water level and the changes were unrelated to nutrient loading. The share of filamentous blue-greens among phytoplankton followed the changes in the water level while there was a succession of dominants. Planktolyngbya limnetica reached its maximum in the low water period in the middle of the 1970s. Limnothrix redekei and L. planktonica started to dominate in the high water period in the 1980s while the total biomass decreased substantially in spite of high nutrient loading. During the low water period in the 1990s, the role of the nitrogen-fixing species Aphanizomenon skujae increased. The succession was caused by changes in light and nutrient availability in the fully mixed environment. As low light species, filamentous Limnothrix spp. were most successful in competition for light and phosphorus in deeper water while A. skujae was favoured by high light intensities and a low N/P ratio in shallow water.
Hydrobiologia | 2009
Peeter Nõges; Wouter van de Bund; Ana Cristina Cardoso; Angelo G. Solimini; Anna Stiina Heiskanen
The ‘normative definitions’ of ecological water quality classes given by the Water Framework Directive (WFD) are narrative descriptions of the conditions present in water bodies of different qualities relative to reference conditions found in unimpacted sites. In order to fill these descriptions with a more solid content, the definitions have been a subject of intensive development of quantitative methodologies for ecological status assessment as well as for rules and criteria for setting of reference conditions and ecological status boundaries for classification of water bodies. In this article, we recall the basic principles of the WFD that sometimes have been overlooked and point out some gaps remained and problems arisen during the ongoing implementation of the directive. Defining type-specific reference conditions for water bodies and finding biological metrics that sensitively reflect only the anthropogenic deviations from those conditions are the biggest challenges that the ecological status assessment faces. So far, there is no guarantee that reference conditions are comparable across EU Member States due to a lack of common criteria, which need still to be elaborated. Defining site-specific reference conditions instead of type specific is a novel approach that allows for minimizing uncertainties introduced by applying broad types. Search for new metrics has led to a real boom of multimetric indices which ought to be the adequate tool to measure the multiple human impairments but which should pass a thorough check before being included in monitoring programs. Curiously, some biological indices constructed as surrogates for chemistry (especially nutrients) start ‘living their own life’ and continue indicating the disturbance when the controlling factors change. This shows the obvious advantage of biological indicators against chemical ones. New challenges to WFD implementation are brought about by the need to consider the effects of alien species and climate change in the assessment framework, and by the nonlinear dose—response relationships dominating in biological systems. Attempts to diminish uncertainties in quality assessment have become a new labour-intensive field for researchers.
Hydrobiologia | 2013
Laurence Carvalho; Sandra Poikane; A. Lyche Solheim; Geoff Phillips; Gábor Borics; Jordi Catalan; C. De Hoyos; Stina Drakare; Bernard Dudley; Marko Järvinen; Christophe Laplace-Treyture; Kairi Maileht; Claire McDonald; Ute Mischke; Jannicke Moe; Giuseppe Morabito; Peeter Nõges; Tiina Nõges; Ingmar Ott; Agnieszka Pasztaleniec; Birger Skjelbred; Stephen J. Thackeray
Phytoplankton constitutes a diverse array of short-lived organisms which derive their nutrients from the water column of lakes. These features make this community the most direct and earliest indicator of the impacts of changing nutrient conditions on lake ecosystems. It also makes them particularly suitable for measuring the success of restoration measures following reductions in nutrient loads. This paper integrates a large volume of work on a number of measures, or metrics, developed for using phytoplankton to assess the ecological status of European lakes, as required for the Water Framework Directive. It assesses the indicator strength of these metrics, specifically in relation to representing the impacts of eutrophication. It also examines how these measures vary naturally at different locations within a lake, as well as between lakes, and how much variability is associated with different replicate samples, different months within a year and between years. On the basis of this analysis, three of the strongest metrics (chlorophyll-a, phytoplankton trophic index (PTI), and cyanobacterial biovolume) are recommended for use as robust measures for assessing the ecological quality of lakes in relation to nutrient-enrichment pressures and a minimum recommended sampling frequency is provided for these three metrics.
Scientific Data | 2015
Sapna Sharma; Derek K. Gray; Jordan S. Read; Catherine M. O’Reilly; Philipp Schneider; Anam Qudrat; Corinna Gries; Samantha Stefanoff; Stephanie E. Hampton; Simon J. Hook; John D. Lenters; David M. Livingstone; Peter B. McIntyre; Rita Adrian; Mathew G. Allan; Orlane Anneville; Lauri Arvola; Jay A. Austin; John L. Bailey; Jill S. Baron; Justin D. Brookes; Yuwei Chen; Robert Daly; Martin T. Dokulil; Bo Dong; Kye Ewing; Elvira de Eyto; David P. Hamilton; Karl E. Havens; Shane Haydon
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
Science of The Total Environment | 2016
Peeter Nõges; Christine Argillier; Ángel Borja; Joxe Mikel Garmendia; Jenică Hanganu; Vit Kodes; Florian Pletterbauer; Alban Sagouis; Sebastian Birk
We reviewed 219 papers and built an inventory of 532 items of ecological evidence on multiple stressor impacts in rivers, lakes, transitional and coastal waters, as well as groundwaters. Our review revealed that, despite the existence of a huge conceptual knowledge base in aquatic ecology, few studies actually provide quantitative evidence on multi-stress effects. Nutrient stress was involved in 71% to 98% of multi-stress situations in the three types of surface water environments, and in 42% of those in groundwaters. However, their impact manifested differently along the groundwater-river-lake-transitional-coastal continuum, mainly determined by the different hydro-morphological features of these ecosystems. The reviewed papers addressed two-stressor combinations most frequently (42%), corresponding with the actual status-quo of pressures acting on European surface waters as reported by the Member States in the WISE WFD Database (EEA, 2015). Across all biological groups analysed, higher explanatory power of the stress-effect models was discernible for lakes under multi-stressor compared to single stressor conditions, but generally lower for coastal and transitional waters. Across all aquatic environments, the explanatory power of stress-effect models for fish increased when multi-stressor conditions were taken into account in the analysis, qualifying this organism group as a useful indicator of multi-stress effects. In contrast, the explanatory power of models using benthic flora decreased under conditions of multiple stress.
Hydrobiologia | 2007
Tiina Nõges; Arvo Järvet; Anu Kisand; Reet Laugaste; Enn Loigu; Boris Skakalski; Peeter Nõges
More than 20-year monitoring of Estonian rivers reveals that the loading of nitrogen to large shallow lakes Peipsi (3,555 km2, mean depth 7.1 m) and Võrtsjärv (270 km2, mean depth 2.8 m) decreased substantially in the 1990s. Phosphorus loading decreased to a much smaller extent than nitrogen loading. In L. Võrtsjärv both N and P concentrations followed the decreasing trends of loading, which show the high sensitivity of large shallow lakes to catchment processes. Our study showed a positive relationship between P content in sediments and the relative depth of the lake. Assumingly the resilience of a lake in responding to the reduction of nutrient loading decreases together with the decrease of its relative depth. In L. Peipsi the concentration of P has not decreased since the 1990s. Our data show indirectly that P loading from Russia to L. Peipsi may have increased. The N/P ratio has decreased in both lakes. Cyanobacterial blooms have been common in both lakes already at the beginning of the 20th century. The blooms disappeared during heavy nitrogen loading in the 1980s but started again in L. Peipsi in recent years together with the drop of the N/P ratio. In L. Võrtsjärv the N/P ratio is higher and the ecosystem is more stable although the share of N2-fixing cyanobacteria increased from the 1990s. Reappearing cyanobacterial blooms in L. Peipsi have caused fish-kills in recent years. In L. Peipsi summer/autumn fish-kills during water-blooms are a straightforward consequence of reduced nitrogen level at remaining high phosphorus level while in L. Võrtsjärv the climatic factors affecting water level are more critical––at low water level winter fish-kills may occur. In L. Võrtsjärv nutrient loading has decreased and water quality has improved, present ecological status seems to be mostly controlled by climatic factors through changes of water level. The most important measure to improve water quality in L. Peipsi would be the reduction of phosphorus loading from both Estonian and Russian subcatchments.
Archive | 2009
Lauri Arvola; Glen George; David M. Livingstone; Marko Järvinen; Thorsten Blenckner; Martin T. Dokulil; Eleanor Jennings; Caitriona Nic Aonghusa; Peeter Nõges; Tiina Nõges; Gesa A. Weyhenmeyer
Meteorological forcing at the air-water interface is the main determinant of the heat balance of most lakes (Edinger et al., 1968; Sweers, 1976). Year-to-year changes in the weather therefore have a major effect on the thermal characteristics of lakes. However, lakes that differ with respect to their morphometry respond differently to these changes (Gorham, 1964), with deeper lakes integrating the effects of meteorological forcing over longer periods of time. Other important factors that can influence the thermal characteristics of lakes include hydraulic residence time, optical properties and landscape setting (e.g. Salonen et al., 1984; Fee et al., 1996; Livingstone et al., 1999). These factors modify the thermal responses of the lake to meteorological forcing (cf. Magnuson et al., 2004; Blenckner, 2005) and regulate the patterns of spatial coherence (Chapter 17) observed in the different regions (Livingstone, 1993; George et al., 2000; Livingstone and Dokulil, 2001; Jarvinen et al., 2002; Blenckner et al., 2004)