Peggy Nelson
Defence Research and Development Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peggy Nelson.
Toxicon | 2009
Yushan Wang; M. Tracy Weiss; Junfei Yin; Robert Frew; Catherine Tenn; Peggy Nelson; Cory Vair
Maitotoxin (MTX) is one of the most potent toxins known to date. It causes massive calcium (Ca(2+)) influx and necrotic cell death in various tissues. However, the exact mechanism(s) underlying its cellular toxicity is not fully understood. In the present study, the role of the sodium hydrogen exchanger (NHE) in MTX-induced increases in intracellular Ca(2+) and subsequent cell death were investigated in cultured rat cortical neurons. Intracellular Ca(2+) concentrations ([Ca(2+)](i)) were measured fluorimetrically using FURA-2 as the fluorescence indicator. Cell death was measured with the alamarBlue cell viability assay and the vital dye ethidium bromide (EB) uptake assay. Results showed that MTX increased, in a concentration dependent manner, both [Ca(2+)](i) and cell death in cortical neurons. Decreasing the pH of the treatment medium from 7.5 to 6.0 diminished MTX-induced cell death. The protection offered by lowering extracellular pH was not due to MTX degradation, because it was still effective even if the cells were treated with MTX in normal pH and then switched to a lower pH. Pretreatment of cells with the specific NHE inhibitor, 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), prevented MTX-induced increases in [Ca(2+)](i), as well as cell death in a concentration dependent manner. Furthermore, knockdown of NHE1 by SiRNA transfection suppressed MTX-induced cell death in human embryonic kidney (HEK) cells. Together, these results suggest that NHE1 plays a major role in MTX-induced neurotoxicity.
Toxicology and Applied Pharmacology | 2003
Lei Mi; Wenrong Gong; Peggy Nelson; Leanne Martin
The effect of temperature on the development of sulphur mustard (HD)-induced toxicity was investigated in first passage cultures of human skin keratinocytes and on hairless guinea pig skin. When cells exposed to HD were incubated at 37 degrees C, a concentration-dependent decline in viability was observed that was maximal by 2 days. In contrast, no significant HD-induced toxicity was evident up to 4 days posttreatment when the cells were incubated at 25 degrees C. However, these protective effects were lost by 24 h when the cells were switched back to 37 degrees C. The protective effects of hypothermia were also demonstrated when apoptotic endpoints were examined. The HD concentration-dependent induction of fragmented DNA (as quantitated using soluble DNA and the TUNEL reaction), morphology, and p53 expression were all significantly depressed when cell cultures were incubated at 25 degrees C compared to 37 degrees C. When animals were exposed to HD vapour for 2, 4, and 6 min and left at room temperature, lesions were produced whose severity was dependent on exposure time and that were maximal by 72 h posttreatment. Moderate cooling (5-10 degrees C) of HD exposure sites posttreatment (4-6 h) significantly reduced the severity of the resultant lesions. However, in contrast to the in vitro results, these effects were permanent. It appears that the early and noninvasive act of cooling HD-exposed skin may provide a facile means of reducing the severity of HD-induced cutaneous lesions.
Toxicon | 2008
Robert Frew; Yushan Wang; Tracy Weiss; Peggy Nelson
The highly potent marine toxin maitotoxin (MTX) evoked an increase in cytosolic Ca(2+) levels in fura-2 loaded rat aortic smooth muscle cells, which was dependent on extracellular Ca(2+). This increase was almost fully inhibited by KB-R7943, a potent selective inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger (NCX). Cell viability was assessed using ethidium bromide uptake and the alamarBlue cytotoxicity assay. In both assays MTX-induced toxicity was attenuated by KB-R7943, as well as by MDL 28170, a membrane permeable calpain inhibitor. Maitotoxin-evoked contractions of rat aortic strip preparations in vitro, which persist following washout of the toxin, were relaxed by subsequent addition of KB-R7943 or MDL 28170, either in the presence of, or following washout of MTX. These results suggest that MTX targets the Na(+)/Ca(2+) exchanger and causes it to operate in reverse mode (Na(+) efflux/Ca(2+) influx), thus leading to calpain activation, NCX cleavage, secondary Ca(2+) overload and cell death.
Frontiers in Neurology | 2017
Yushan Wang; Yiu Chung Tse; Changyang Fan; Grant Hennes; Julia Barnes; Tyson Josey; Tracy Weiss; Peggy Nelson; Tak Pan Wong
Traumatic brain injury (TBI) due to blast from improvised explosive devices has been a leading cause of morbidity and mortality in recent conflicts in Iraq and Afghanistan. However, the mechanisms of primary blast-induced TBI are not well understood. The Akt signal transduction pathway has been implicated in various brain pathologies including TBI. In the present study, the effects of simulated primary blast waves on the phosphorylation status of Akt and its downstream effector kinase, glycogen synthase kinase 3β (GSK3β), in rat hippocampus, were investigated. Male Sprague-Dawley (SD) rats (350–400 g) were exposed to a single pulse shock wave (25 psi; ~7 ms duration) and sacrificed 1 day, 1 week, or 6 weeks after exposure. Total and phosphorylated Akt, as well as phosphorylation of its downstream effector kinase GSK3β (at serine 9), were detected with western blot analysis and immunohistochemistry. Results showed that Akt phosphorylation at both serine 473 and threonine 308 was increased 1 day after blast on the ipsilateral side of the hippocampus, and this elevation persisted until at least 6 weeks postexposure. Similarly, phosphorylation of GSK3β at serine 9, which inhibits GSK3β activity, was also increased starting at 1 day and persisted until at least 6 weeks after primary blast on the ipsilateral side. In contrast, p-Akt was increased at 1 and 6 weeks on the contralateral side, while p-GSK3β was increased 1 day and 1 week after primary blast exposure. No significant changes in total protein levels of Akt and GSK were observed on either side of the hippocampus at any time points. Immunohistochemical results showed that increased p-Akt was mainly of neuronal origin in the CA1 region of the hippocampus and once phosphorylated, the majority was translocated to the dendritic and plasma membranes. Finally, electrophysiological data showed that evoked synaptic N-methyl-d-aspartate (NMDA) receptor activity was significantly increased 6 weeks after primary blast, suggesting that increased Akt phosphorylation may enhance synaptic NMDA receptor activation, or that enhanced synaptic NMDA receptor activation may increase Akt phosphorylation.
Toxicology and Applied Pharmacology | 2010
Peggy Nelson; Stephen Bjarnason; Cory Vair; Yimin Shei; Catherine Tenn; Pierre Lecavalier; Andrew Burczyk
The effect of ionic environment on sulphur mustard (bis 2-chloroethyl sulphide; HD) toxicity was examined in CHO-K1 cells. Cultures were treated with HD in different ionic environments at constant osmolar conditions (320 mOsM, pH 7.4). The cultures were refed with fresh culture medium 1h after HD exposure, and viability was assessed. Little toxicity was apparent when HD exposures were carried out in ion-free sucrose buffer compared to LC(50) values of approximately 100-150 microM when the cultures were treated with HD in culture medium. Addition of NaCl to the buffer increased HD toxicity in a salt concentration-dependent manner to values similar to those obtained in culture medium. HD toxicity was dependent on both cationic and anionic species with anionic environment playing a much larger role in determining toxicity. Substitution of NaI for NaCl in the treatment buffers increased HD toxicity by over 1000%. The activity of the sodium hydrogen exchanger (NHE) in recovering from cytosolic acidification in salt-free and in different chloride salts did not correlate with the HD-induced toxicity in these buffers. However, the inhibition by HD of intracellular pH regulation correlated with its toxicity in NaCl, NaI and sucrose buffers. Analytical chemical studies and the toxicity of the iodine mustard derivative ruled out the role of chemical reactions yielding differentially toxic species as being responsible for the differences in HD toxicity observed. This work demonstrates that the early events that HD sets into motion to cause toxicity are dependent on ionic environment, possibly due to intracellular pH deregulation.
Human & Experimental Toxicology | 2007
Peggy Nelson; Andrew Burczyk
Several compounds involved in the creatine phosphate kinase (CPK) pathway were evaluated for their protective effects against the chemical warfare (CW) agent sulphur mustard (HD), in primary chick embryo neuron and first passage human skin keratinocyte cultures. High concentrations of both creatine and creatine phosphate were found to be protective under all culture conditions and increased the LC50 of HD in both culture systems up to ~250%. Little difference was observed in the protective activity of these compounds in undifferentiated versus differentiated neuronal culture, or in proliferating versus differentiating cultures of keratinocytes. The protective effect of these compounds was found to be strictly prophylactic in nature. Although a modest decline in HD half-life was measured in buffer containing creatine phosphate, this did not account for the protective effects of this compound. In contrast to historical literature reporting 90—100% HD-induced CPK inhibition of purified enzyme, less than 30% of CPK activity was found to be inhibited by HD in both human keratinocytes and in swine blood plasma. Incubation of keratinocyte cultures with creatine or creatine phosphate prior to HD exposure did not alter CPK activity, compared with HD-only treated cultures. Although high mM concentrations of both creatine and creatine phosphate exert significant protective effects against HD, these results do not support a role for CPK in its toxicity or in the development of medical countermeasures against this CW agent. Human & Experimental Toxicology (2007) 26, 891—897.
European Journal of Pharmacology | 2004
Paul M. Lundy; Peggy Nelson; Lei Mi; Robert Frew; Sean Minaker; Cory Vair; Thomas W. Sawyer
Military Medicine | 2002
Peggy Nelson; Ira Hill; John D. Conley; K. L. Blohm; Corey Davidson
Journal of Neurotrauma | 2016
Thomas W. Sawyer; Yushan Wang; David V. Ritzel; Tyson Josey; Mercy Villanueva; Yimin Shei; Peggy Nelson; Grant Hennes; Tracy Weiss; Cory Vair; Changyang Fan; Julia Barnes
Toxicology | 2006
Peggy Nelson; James R. Hancock