Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peggy P. Ho is active.

Publication


Featured researches published by Peggy P. Ho.


Nature Medicine | 2006

Lipid microarrays identify key mediators of autoimmune brain inflammation

Jennifer L. Kanter; Sirisha Narayana; Peggy P. Ho; Ingrid Catz; Kenneth G. Warren; Raymond A. Sobel; Lawrence Steinman; William H. Robinson

Recent studies suggest that increased T-cell and autoantibody reactivity to lipids may be present in the autoimmune demyelinating disease multiple sclerosis. To perform large-scale multiplex analysis of antibody responses to lipids in multiple sclerosis, we developed microarrays composed of lipids present in the myelin sheath, including ganglioside, sulfatide, cerebroside, sphingomyelin and total brain lipid fractions. Lipid-array analysis showed lipid-specific antibodies against sulfatide, sphingomyelin and oxidized lipids in cerebrospinal fluid (CSF) derived from individuals with multiple sclerosis. Sulfatide-specific antibodies were also detected in SJL/J mice with acute experimental autoimmune encephalomyelitis (EAE). Immunization of mice with sulfatide plus myelin peptide resulted in a more severe disease course of EAE, and administration of sulfatide-specific antibody exacerbated EAE. Thus, autoimmune responses to sulfatide and other lipids are present in individuals with multiple sclerosis and in EAE, and may contribute to the pathogenesis of autoimmune demyelination.


Journal of Clinical Investigation | 2007

Heme oxygenase–1 and carbon monoxide suppress autoimmune neuroinflammation

Ângelo Chora; Paulo Fontoura; Andreia Cunha; Teresa F. Pais; Silvia Cardoso; Peggy P. Ho; Lowen Y. Lee; Raymond A. Sobel; Lawrence Steinman; Miguel P. Soares

Heme oxygenase-1 (HO-1, encoded by HMOX1) dampens inflammatory reactions via the catabolism of heme into CO, Fe, and biliverdin. We report that expression of HO-1 dictates the pathologic outcome of experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). Induction of EAE in Hmox1(-/- )C57BL/6 mice led to enhanced CNS demyelination, paralysis, and mortality, as compared with Hmox1(+/+) mice. Induction of HO-1 by cobalt protoporphyrin IX (CoPPIX) administration after EAE onset reversed paralysis in C57BL/6 and SJL/J mice and disease relapse in SJL/J mice. These effects were not observed using zinc protoporphyrin IX, which does not induce HO-1. CoPPIX protection was abrogated in Hmox1(-/-) C57BL/6 mice, indicating that CoPPIX acts via HO-1 to suppress EAE progression. The protective effect of HO-1 was associated with inhibition of MHC class II expression by APCs and inhibition of Th and CD8 T cell accumulation, proliferation, and effector function within the CNS. Exogenous CO mimicked these effects, suggesting that CO contributes to the protective action of HO-1. In conclusion, HO-1 or exposure to its end product CO counters autoimmune neuroinflammation and thus might be used therapeutically to treat MS.


Nature Neuroscience | 2004

The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination

Tara Karnezis; Wim Mandemakers; Jonathan L. Mcqualter; Binhai Zheng; Peggy P. Ho; Kelly A Jordan; Ben A. Barres; Marc Tessier-Lavigne; Claude C. A. Bernard

Inhibitors associated with CNS myelin are thought to be important in the failure of axons to regenerate after spinal cord injury and in other neurodegenerative disorders. Here we show that targeting the CNS-specific inhibitor of neurite outgrowth Nogo A by active immunization blunts clinical signs, demyelination and axonal damage associated with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). Mice vaccinated against Nogo A produce Nogo-specific antibodies that block the neurite outgrowth inhibitory activity associated with CNS myelin in vitro. Passive immunization with anti-Nogo IgGs also suppresses EAE. Our results identify Nogo A as an important determinant of the development of EAE and suggest that its blockade may help to maintain and/or to restore the neuronal integrity of the CNS after autoimmune insult in diseases such as MS. Our finding that Nogo A is involved in CNS autoimmune demyelination indicates that this molecule may have a far more complex role than has been previously anticipated.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity

Michael Platten; Sawsan Youssef; Eun Mi Hur; Peggy P. Ho; May H. Han; Tobias V. Lanz; Lori Phillips; Matthew J. Goldstein; Roopa Bhat; Cedric S. Raine; Raymond A. Sobel; Lawrence Steinman

The renin-angiotensin-aldosterone system (RAAS) is a major regulator of blood pressure. The octapeptide angiotensin II (AII) is proteolytically processed from the decapeptide AI by angiotensin-converting enzyme (ACE), and then acts via angiotensin type 1 and type 2 receptors (AT1R and AT2R). Inhibitors of ACE and antagonists of the AT1R are used in the treatment of hypertension, myocardial infarction, and stroke. We now show that the RAAS also plays a major role in autoimmunity, exemplified by multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Using proteomics, we observed that RAAS is up-regulated in brain lesions of MS. AT1R was induced in myelin-specific CD4+ T cells and monocytes during autoimmune neuroinflammation. Blocking AII production with ACE inhibitors or inhibiting AII signaling with AT1R blockers suppressed autoreactive TH1 and TH17 cells and promoted antigen-specific CD4+FoxP3+ regulatory T cells (Treg cells) with inhibition of the canonical NF-κB1 transcription factor complex and activation of the alternative NF-κB2 pathway. Treatment with ACE inhibitors induces abundant CD4+FoxP3+ T cells with sufficient potency to reverse paralytic EAE. Modulation of the RAAS with inexpensive, safe pharmaceuticals used by millions worldwide is an attractive therapeutic strategy for application to human autoimmune diseases.


Journal of Clinical Investigation | 2006

Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis

Ricardo T. Paniagua; Orr Sharpe; Peggy P. Ho; Steven M. Chan; Anna Chang; John P. Higgins; Beren Tomooka; Fiona M. Thomas; Jason Jungsik Song; Stuart B. Goodman; David M. Lee; Mark C. Genovese; Paul J. Utz; Lawrence Steinman; William H. Robinson

Tyrosine kinases play a central role in the activation of signal transduction pathways and cellular responses that mediate the pathogenesis of rheumatoid arthritis. Imatinib mesylate (imatinib) is a tyrosine kinase inhibitor developed to treat Bcr/Abl-expressing leukemias and subsequently found to treat c-Kit-expressing gastrointestinal stromal tumors. We demonstrate that imatinib potently prevents and treats murine collagen-induced arthritis (CIA). We further show that micromolar concentrations of imatinib abrogate multiple signal transduction pathways implicated in RA pathogenesis, including mast cell c-Kit signaling and TNF-alpha release, macrophage c-Fms activation and cytokine production, and fibroblast PDGFR signaling and proliferation. In our studies, imatinib attenuated PDGFR signaling in fibroblast-like synoviocytes (FLSs) and TNF-alpha production in synovial fluid mononuclear cells (SFMCs) derived from human RA patients. Imatinib-mediated inhibition of a spectrum of signal transduction pathways and the downstream pathogenic cellular responses may provide a powerful approach to treat RA and other inflammatory diseases.


Arthritis Research & Therapy | 2008

Circulating immune complexes contain citrullinated fibrinogen in rheumatoid arthritis

Xiaoyan Zhao; Nwora Lance Okeke; Orr Sharpe; Franak Batliwalla; Annette Lee; Peggy P. Ho; Beren Tomooka; Peter K. Gregersen; William H. Robinson

IntroductionThere is increasing evidence that autoantibodies and immune complexes (ICs) contribute to synovitis in rheumatoid arthritis (RA), yet the autoantigens incorporated in ICs in RA remain incompletely characterised.MethodsWe used the C1q protein to capture ICs from plasma derived from human RA and control patients. Antibodies specific for immunoglobulin were used to detect ICs, and fibrinogen antibodies were used to detect fibrinogen-containing ICs. RA and control plasma were separated by liquid chromatography, and fractions then characterised by ELISA, immunoblotting and mass spectrometry. Immunohistochemical staining was performed on rheumatoid synovial tissue.ResultsC1q-immunoassays demonstrated increased levels of IgG (p = 0.01) and IgM (p = 0.0002) ICs in plasma derived from RA patients possessing anti-cyclic citrullinated peptide (CCP+) autoantibodies as compared with healthy controls. About one-half of the anti-CCP+ RA possessed circulating ICs containing fibrinogen (p = 0.0004). Fractionation of whole RA plasma revealed citrullinated fibrinogen in the high molecular weight fractions that contained ICs. Positive correlations were observed between fibrinogen-containing ICs and anti-citrullinated fibrinogen autoantibodies, anti-CCP antibody, rheumatoid factor and certain clinical characteristics. Immunohistochemical staining demonstrated co-localisation of fibrinogen, immunoglobulin and complement component C3 in RA pannus tissue. Mass spectrometry analysis of immune complexes immunoprecipitated from RA pannus tissue lysates demonstrated the presence of citrullinated fibrinogen.ConclusionCirculating ICs containing citrullinated fibrinogen are present in one-half of anti-CCP+ RA patients, and these ICs co-localise with C3 in the rheumatoid synovium suggesting that they contribute to synovitis in a subset of RA patients.


Journal of Clinical Investigation | 2010

Angiotensin II sustains brain inflammation in mice via TGF-β

Tobias V. Lanz; Zhaoqing Ding; Peggy P. Ho; Jian Luo; Ankur N. Agrawal; Hrishikesh Srinagesh; Robert C. Axtell; Hui Zhang; Michael Platten; Tony Wyss-Coray; Lawrence Steinman

The renin-angiotensin-aldosterone system (RAAS) is a key hormonal system regulating blood pressure. However, expression of RAAS components has recently been detected in immune cells, and the RAAS has been implicated in several mouse models of autoimmune disease. Here, we have identified Ang II as a paracrine mediator, sustaining inflammation in the CNS in the EAE mouse model of MS via TGF-beta. Ang II type 1 receptors (AT1Rs) were found to be primarily expressed in CNS-resident cells during EAE. In vitro, astrocytes and microglia responded to Ang II treatment by inducing TGF-beta expression via a pathway involving the TGF-beta-activating protease thrombospondin-1 (TSP-1). TGF-beta upregulation in astrocytes and microglia during EAE was blocked with candesartan (CA), an inhibitor of AT1R. Treatment of EAE with CA ameliorated paralysis and blunted lymphocyte infiltration into the CNS, outcomes that were also seen with genetic ablation of AT1Ra and treatment with an inhibitor of TSP-1. These data suggest that AT1R antagonists, frequently prescribed as antihypertensives, may be useful to interrupt this proinflammatory, CNS-specific pathway in individuals with MS.


Arthritis Research & Therapy | 2008

Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination

Brian A. Kidd; Peggy P. Ho; Orr Sharpe; Xiaoyan Zhao; Beren Tomooka; Jennifer L. Kanter; Lawrence Steinman; William H. Robinson

IntroductionAnti-citrullinated protein antibodies have a diagnostic role in rheumatoid arthritis (RA); however, little is known about their origins and contribution to pathogenesis. Citrullination is the post-translational conversion of arginine to citrulline by peptidyl arginine deiminase, and increased citrullination of proteins is observed in the joint tissue in RA and in brain tissue in multiple sclerosis (MS).MethodsWe applied synovial and myelin protein arrays to examine epitope spreading of B cell responses to citrullinated epitopes in both the collagen-induced arthritis (CIA) model for RA and the experimental autoimmune encephalomyelitis (EAE) model for MS. Synovial and myelin protein arrays contain a spectrum of proteins and peptides, including native and citrullinated forms, representing candidate autoantigens in RA and MS, respectively. We applied these arrays to characterise the specificity of autoantibodies in serial serum samples derived from mice with acute and chronic stages of CIA and EAE.ResultsIn samples from pre-disease CIA and acute-disease EAE, we observed autoantibody targeting of the immunising antigen and responses to a limited set of citrullinated epitopes. Over the course of diseases, the autoantibody responses expanded to target multiple citrullinated epitopes in both CIA and EAE. Using immunoblotting and mass spectrometry analysis, we identified citrullination of multiple polypeptides in CIA joint and EAE brain tissue that have not previously been described as citrullinated.ConclusionsOur results suggest that anti-citrulline antibody responses develop in the early stages of CIA and EAE, and that autoimmune inflammation results in citrullination of joint proteins in CIA and brain proteins in EAE, thereby creating neoantigens that become additional targets in epitope spreading of autoimmune responses.


Journal of Immunology | 2003

An Immunomodulatory GpG Oligonucleotide for the Treatment of Autoimmunity via the Innate and Adaptive Immune Systems

Peggy P. Ho; Paulo Fontoura; Pedro J. Ruiz; Lawrence Steinman; Hideki Garren

Bacterial DNA and immunostimulatory CpG oligodeoxynucleotides (ODNs) activate the innate immune system to produce proinflammatory cytokines. Shown to be potent Th1-like adjuvants, stimulatory CpG motifs are currently used as effective therapeutic vaccines for various animal models of infectious diseases, tumors, allergies, and autoimmune diseases. In this study, we show that the application of an immunomodulatory GpG ODN, with a single base switch from CpG to GpG, can effectively inhibit the activation of Th1 T cells associated with autoimmune disease. Moreover, this immunomodulatory GpG ODN suppresses the severity of experimental autoimmune encephalomyelitis in mice, a prototypic Th1-mediated animal disease model for multiple sclerosis.


Journal of Clinical Investigation | 2007

Glia-dependent TGF-β signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis

Jian Luo; Peggy P. Ho; Marion S. Buckwalter; Tiffany Hsu; Lowen Y. Lee; Hui Zhang; Dae-Kee Kim; Seong-Jin Kim; Sanjiv S. Gambhir; Lawrence Steinman; Tony Wyss-Coray

Autoimmune encephalomyelitis, a mouse model for multiple sclerosis, is characterized by the activation of immune cells, demyelination of axons in the CNS, and paralysis. We found that TGF-beta1 synthesis in glial cells and TGF-beta-induced signaling in the CNS were activated several days before the onset of paralysis in mice with autoimmune encephalomyelitis. While early production of TGF-beta1 was observed in glial cells TGF-beta signaling was activated in neurons and later in infiltrating T cells in inflammatory lesions. Systemic treatment with a pharmacological inhibitor of TGF-beta signaling ameliorated the paralytic disease and reduced the accumulation of pathogenic T cells and expression of IL-6 in the CNS. Priming of peripheral T cells was not altered, nor was the generation of TH17 cells, indicating that this effect was directed within the brain, yet affected the immune system. These results suggest that early production of TGF-beta1 in the CNS creates a permissive and dangerous environment for the initiation of autoimmune inflammation, providing a rare example of the brain modulating the immune system. Importantly, inhibition of TGF-beta signaling may have benefits in the treatment of the acute phase of autoimmune CNS inflammation.

Collaboration


Dive into the Peggy P. Ho's collaboration.

Top Co-Authors

Avatar

Lawrence Steinman

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge