Peggy Parroche
University of Massachusetts Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peggy Parroche.
Nature Immunology | 2007
Jane Tian; Ana Maria Avalos; Su-Yau Mao; Bo Chen; Kannaki Senthil; Herren Wu; Peggy Parroche; Stacey Drabic; Douglas T. Golenbock; Cherilyn M. Sirois; Jing Hua; Ling Ling An; Laurent Audoly; Greg La Rosa; Angelika Bierhaus; Peter Naworth; Ann Marshak-Rothstein; Mary K. Crow; Katherine A. Fitzgerald; Eicke Latz; Peter A. Kiener; Anthony J. Coyle
Increased concentrations of DNA-containing immune complexes in the serum are associated with systemic autoimmune diseases such as lupus. Stimulation of Toll-like receptor 9 (TLR9) by DNA is important in the activation of plasmacytoid dendritic cells and B cells. Here we show that HMGB1, a nuclear DNA-binding protein released from necrotic cells, was an essential component of DNA-containing immune complexes that stimulated cytokine production through a TLR9–MyD88 pathway involving the multivalent receptor RAGE. Moreover, binding of HMGB1 to class A CpG oligodeoxynucleotides considerably augmented cytokine production by means of TLR9 and RAGE. Our data demonstrate a mechanism by which HMGB1 and RAGE activate plasmacytoid dendritic cells and B cells in response to DNA and contribute to autoimmune pathogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Peggy Parroche; Fanny N. Lauw; Nadege Goutagny; Eicke Latz; Brian G. Monks; Alberto Visintin; Kristen A. Halmen; Marc Lamphier; Martin Olivier; Daniella Castanheira Bartholomeu; Ricardo T. Gazzinelli; Douglas T. Golenbock
Hemozoin (HZ) is an insoluble crystal formed in the food vacuole of malaria parasites. HZ has been reported to induce inflammation by directly engaging Toll-like receptor (TLR) 9, an endosomal receptor. “Synthetic” HZ (β-hematin), typically generated from partially purified extracts of bovine hemin, is structurally identical to natural HZ. When HPLC-purified hemin was used to synthesize the crystal, β-hematin had no inflammatory activity. In contrast, natural HZ from Plasmodium falciparum cultures was a potent TLR9 inducer. Natural HZ bound recombinant TLR9 ectodomain, but not TLR2. Both TLR9 stimulation and TLR9 binding of HZ were abolished by nuclease treatment. PCR analysis demonstrated that natural HZ is coated with malarial but not human DNA. Purified malarial DNA activated TLR9 but only when DNA was targeted directly to the endosome with a transfection reagent. Stimulatory quantities of natural HZ contain <1 μg of malarial DNA; its potency in activating immune responses was even greater than transfecting malarial DNA. Thus, although the malarial genome is extremely AT-rich, its DNA is highly proinflammatory, with the potential to induce cytokinemia and fever during disease. However, its activity depends on being bound to HZ, which we propose amplifies the biological responses to malaria DNA by targeting it to a TLR9+ intracellular compartment.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Bernardo S. Franklin; Peggy Parroche; Marco Antǒnio Ataíde; Fanny N. Lauw; Catherine Ropert; Rosane B. de Oliveira; Dhelio Batista Pereira; Mauro Shugiro Tada; Paulo Afonso Nogueira; Luiz Hildebrando Pereira da Silva; Harry Björkbacka; Douglas T. Golenbock; Ricardo T. Gazzinelli
Malaria-induced sepsis is associated with an intense proinflammatory cytokinemia for which the underlying mechanisms are poorly understood. It has been demonstrated that experimental infection of humans with Plasmodium falciparum primes Toll-like receptor (TLR)-mediated proinflammatory responses. Nevertheless, the relevance of this phenomenon during natural infection and, more importantly, the mechanisms by which malaria mediates TLR hyperresponsiveness are unclear. Here we show that TLR responses are boosted in febrile patients during natural infection with P. falciparum. Microarray analyses demonstrated that an extraordinary percentage of the up-regulated genes, including genes involving TLR signaling, had sites for IFN-inducible transcription factors. To further define the mechanism involved in malaria-mediated “priming,” we infected mice with Plasmodium chabaudi. The human data were remarkably predictive of what we observed in the rodent malaria model. Malaria-induced priming of TLR responses correlated with increased expression of TLR mRNA in a TLR9-, MyD88-, and IFNγ-dependent manner. Acutely infected WT mice were highly susceptible to LPS-induced lethality while TLR9−/−, IL12−/− and to a greater extent, IFNγ−/− mice were protected. Our data provide unprecedented evidence that TLR9 and MyD88 are essential to initiate IL12 and IFNγ responses and favor host hyperresponsiveness to TLR agonists resulting in overproduction of proinflammatory cytokines and the sepsis-like symptoms of acute malaria.
Journal of Immunology | 2008
Daniella Castanheira Bartholomeu; Catherine Ropert; Mariane B. Melo; Peggy Parroche; Caroline Junqueira; Santuza M. R. Teixeira; Cherilyn M. Sirois; Pia Kasperkovitz; Cathrine F. Knetter; Egil Lien; Eicke Latz; Douglas T. Golenbock; Ricardo T. Gazzinelli
TLR9 is critical in parasite recognition and host resistance to experimental infection with Trypanosoma cruzi. However, no information is available regarding nucleotide sequences and cellular events involved on T. cruzi recognition by TLR9. In silico wide analysis associated with in vitro screening of synthetic oligonucleotides demonstrates that the retrotransposon VIPER elements and mucin-like glycoprotein (TcMUC) genes in the T. cruzi genome are highly enriched for CpG motifs that are immunostimulatory for mouse and human TLR9, respectively. Importantly, infection with T. cruzi triggers high levels of luciferase activity under NF-κB-dependent transcription in HEK cells cotransfected with human TLR9, but not in control (cotransfected with human MD2/TLR4) HEK cells. Further, we observed translocation of TLR9 to the lysosomes during invasion/uptake of T. cruzi parasites by dendritic cells. Consistently, potent proinflammatory activity was observed when highly unmethylated T. cruzi genomic DNA was delivered to the endo-lysosomal compartment of host cells expressing TLR9. Thus, together our results indicate that the unmethylated CpG motifs found in the T. cruzi genome are likely to be main parasite targets and probably become available to TLR9 when parasites are destroyed in the lysosome-fused vacuoles during parasite invasion/uptake by phagocytes.
Journal of Immunology | 2010
Nadege Goutagny; Zhaozhao Jiang; Jane Tian; Peggy Parroche; Jeanne Schickli; Brian G. Monks; Nancy Ulbrandt; Hong Ji; Peter A. Kiener; Anthony J. Coyle; Katherine A. Fitzgerald
Human metapneumoviruses (HMPVs) are recently identified Paramyxoviridae that contribute to respiratory tract infections in children. No effective treatments or vaccines are available. Successful defense against virus infection relies on early detection by germ line-encoded pattern recognition receptors and activation of cytokine and type I IFN genes. Recently, the RNA helicase retinoic acid-inducible gene I (RIG-I) has been shown to sense HMPV. In this study, we investigated the abilities of two prototype strains of HMPV (A1 [NL\1\00] and B1 [NL\1\99]) to activate RIG-I and induce type I IFNs. Despite the abilities of both HMPV-A1 and HMPV-B1 to infect and replicate in cell lines and primary cells, only the HMPV-A1 strain triggered RIG-I to induce IFNA/B gene transcription. The failure of the HMPV-B1 strain to elicit type I IFN production was dependent on the B1 phosphoprotein, which specifically prevented RIG-I–mediated sensing of HMPV viral 5′ triphosphate RNA. In contrast to most cell types, plasmacytoid dendritic cells displayed a unique ability to sense both HMPV-A1 and HMPV-B1 and in this case sensing was via TLR7 rather than RIG-I. Collectively, these data reveal differential mechanisms of sensing for two closely related viruses, which operate in cell type‑specific manners.
Journal of Biological Chemistry | 2008
Jianmin Meng; Peggy Parroche; Douglas T. Golenbock; C. James McKnight
Innate immunity is the first line defense against invading pathogens. During Gram-negative bacterial infection, the Toll-like receptor 4 and MD-2 complex recognize lipopolysaccharide present in the bacterial cell wall. This recognition can be enhanced 100-1000-fold by CD14. However, the beneficial role provided by CD14 becomes detrimental in the context of sepsis and septic shock. An understanding of how CD14 functions will therefore benefit treatments targeted at both immune suppression and immune enhancement. In the present study, we use site-directed mutagenesis to address the role of disulfide bonds and N-linked glycosylation on CD14. A differential impact is observed for the five disulfide bonds on CD14 folding, with the first two (Cys6-Cys17 and Cys15-Cys32) being indispensable, the third and fourth (Cys168-Cys198 and Cys222-Cys253) being important, and the last (Cys287-Cys333) being dispensable. A functional role is observed for the first disulfide bond because the C6A substitution severely reduces the ability of CD14 to confer lipopolysaccharide responsiveness to U373 cells. Two of the four predicted glycosylation sites, asparagines 132 and 263, are actually involved in N-linked glycosylation, resulting in heterogeneity in CD14 molecular weight. Furthermore, glycosylation at Asn132 plays a role in CD14 trafficking and upstream and/or downstream ligand interactions. When mapped onto the crystal structure of mouse CD14, the first two disulfide bonds and Asn132 are in close proximity to the initial β strands of the leucine rich repeat domain. Thus, disulfide bonds and N-linked glycosylation in the initial β sheets of the inner concave surface of CD14 are crucial for structure and function.
Journal of Biological Chemistry | 2010
Claudia Zannetti; François Bonnay; Fumihiko Takeshita; Peggy Parroche; Christine Menetrier-Caux; Massimo Tommasino; Uzma A. Hasan
Toll-like receptor 8 (TLR8), which is expressed primarily in myeloid cells, plays a central role in initiating immune responses to viral single-stranded RNA. Despite the great interest in the field of TLR8 research, very little is known in terms of TLR8 biology and its transcriptional regulation. Here, we describe the isolation of the hTLR8 promoter and the characterization of the molecular mechanisms involved in its regulation. Reporter gene analysis and ChIP assays demonstrated that the hTLR8 regulation of the basal transcription is regulated via three C/EBP cis-acting elements that required C/EBPδ and C/EBPβ activity. In addition, we observed that R848 stimulation increases TLR8 transcriptional activity via an enhanced binding of C/EBPδ, and not C/EBPβ, to its responsive sites within the TLR8 promoter. Moreover, we showed that IFN-γ also increased TLR8 transcription activity via the binding of STAT1 transcription factor to IFN-γ activated sequence elements on the TLR8 promoter and enhanced TLR8 functionality. These results shed new light on the mechanisms involved during TLR8-mediated innate immune response.
Journal of Immunology | 2014
Claudia Zannetti; Peggy Parroche; Marine Panaye; Guillaume Roblot; Henri Gruffat; Evelyne Manet; Anne Laure Debaud; Joel Plumas; Nelly Vey; Christophe Caux; Nathalie Bendriss-Vermare; Uzma A. Hasan
The stimulation of TLRs by pathogen-derived molecules leads to the production of proinflammatory cytokines. Because uncontrolled inflammation can be life threatening, TLR regulation is important; however, few studies have identified the signaling pathways that contribute to the modulation of TLR expression. In this study, we examined the relationship between activation and the transcriptional regulation of TLR9. We demonstrate that infection of primary human epithelial cells, B cells, and plasmacytoid dendritic cells with dsDNA viruses induces a regulatory temporary negative-feedback loop that blocks TLR9 transcription and function. TLR9 transcriptional downregulation was dependent on TLR9 signaling and was not induced by TLR5 or other NF-κB activators, such as TNF-α. Engagement of the TLR9 receptor induced the recruitment of a suppressive complex, consisting of NF-κBp65 and HDAC3, to an NF-κB cis element on the TLR9 promoter. Knockdown of HDAC3 blocked the transient suppression in which TLR9 function was restored. These results provide a framework for understanding the complex pathways involved in transcriptional regulation of TLR9, immune induction, and inflammation against viruses.
PLOS Pathogens | 2018
Michelle Ainouze; Pauline Rochefort; Peggy Parroche; Guillaume Roblot; Issam Tout; François Briat; Claudia Zannetti; Marie Marotel; Nadège Goutagny; Philip E. Auron; Alexandra Traverse-Glehen; Aude Lunel-Potencier; Francois Golfier; Murielle Masson; Alexis Robitaille; Massimo Tommasino; Christine Carreira; Thierry Walzer; Thomas Henry; Katia Zanier; Gilles Travé; Uzma A. Hasan
Human papillomavirus type 16 (HPV16) and other oncoviruses have been shown to block innate immune responses and to persist in the host. However, to avoid viral persistence, the immune response attempts to clear the infection. IL-1β is a powerful cytokine produced when viral motifs are sensed by innate receptors that are members of the inflammasome family. Whether oncoviruses such as HPV16 can activate the inflammasome pathway remains unknown. Here, we show that infection of human keratinocytes with HPV16 induced the secretion of IL-1β. Yet, upon expression of the viral early genes, IL-1β transcription was blocked. We went on to show that expression of the viral oncoprotein E6 in human keratinocytes inhibited IRF6 transcription which we revealed regulated IL-1β promoter activity. Preventing E6 expression using siRNA, or using E6 mutants that prevented degradation of p53, showed that p53 regulated IRF6 transcription. HPV16 abrogation of p53 binding to the IRF6 promoter was shown by ChIP in tissues from patients with cervical cancer. Thus E6 inhibition of IRF6 is an escape strategy used by HPV16 to block the production IL-1β. Our findings reveal a struggle between oncoviral persistence and host immunity; which is centered on IL-1β regulation.
Immunity | 2011
Shrutie Sharma; Rosane B. DeOliveira; Parisa Kalantari; Peggy Parroche; Nadege Goutagny; Zhaozhao Jiang; Jennie Chan; Daniella Castanheira Bartholomeu; Fanny N. Lauw; J. Perry Hall; Glen N. Barber; Ricardo T. Gazzinelli; Katherine A. Fitzgerald; Douglas T. Golenbock