Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peggy Seriès is active.

Publication


Featured researches published by Peggy Seriès.


Nature Neuroscience | 2004

Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations

Peggy Seriès; P.E. Latham; Alexandre Pouget

Several studies have shown that the information conveyed by bell-shaped tuning curves increases as their width decreases, leading to the notion that sharpening of tuning curves improves population codes. This notion, however, is based on assumptions that the noise distribution is independent among neurons and independent of the tuning curve width. Here we reexamine these assumptions in networks of spiking neurons by using orientation selectivity as an example. We compare two principal classes of model: one in which the tuning curves are sharpened through cortical lateral interactions, and one in which they are not. We report that sharpening through lateral interactions does not improve population codes but, on the contrary, leads to a severe loss of information. In addition, the sharpening models generate complicated codes that rely extensively on pairwise correlations. Our study generates several experimental predictions that can be used to distinguish between these two classes of model.


Neural Computation | 2009

Is the homunculus aware of sensory adaptation

Peggy Seriès; Alan A. Stocker; Eero P. Simoncelli

Neural activity and perception are both affected by sensory history. The work presented here explores the relationship between the physiological effects of adaptation and their perceptual consequences. Perception is modeled as arising from an encoder-decoder cascade, in which the encoder is defined by the probabilistic response of a population of neurons, and the decoder transforms this population activity into a perceptual estimate. Adaptation is assumed to produce changes in the encoder, and we examine the conditions under which the decoder behavior is consistent with observed perceptual effects in terms of both bias and discriminability. We show that for all decoders, discriminability is bounded from below by the inverse Fisher information. Estimation bias, on the other hand, can arise for a variety of different reasons and can range from zero to substantial. We specifically examine biases that arise when the decoder is fixed, unaware of the changes in the encoding population (as opposed to aware of the adaptation and changing accordingly). We simulate the effects of adaptation on two well-studied sensory attributes, motion direction and contrast, assuming a gain change description of encoder adaptation. Although we cannot uniquely constrain the source of decoder bias, we find for both motion and contrast that an unaware decoder that maximizes the likelihood of the percept given by the preadaptation encoder leads to predictions that are consistent with behavioral data. This model implies that adaptation-induced biases arise as a result of temporary suboptimality of the decoder.


Vision Research | 2002

Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex

Peggy Seriès; Sébastien Georges; Jean Lorenceau; Yves Frégnac

Psychophysical and physiological studies suggest that long-range horizontal connections in primary visual cortex participate in spatial integration and contour processing. Until recently, little attention has been paid to their intrinsic temporal properties. Recent physiological studies indicate, however, that the propagation of activity through long-range horizontal connections is slow, with time scales comparable to the perceptual scales involved in motion processing. Using a simple model of V1 connectivity, we explore some of the implications of this slow dynamics. The model predicts that V1 responses to a stimulus in the receptive field can be modulated by a previous stimulation, a few milliseconds to a few tens of milliseconds before, in the surround. We analyze this phenomenon and its possible consequences on speed perception, as a function of the spatio-temporal configuration of the visual inputs (relative orientation, spatial separation, temporal interval between the elements, sequence speed). We show that the dynamical interactions between feed-forward and horizontal signals in V1 can explain why the perceived speed of fast apparent motion sequences strongly depends on the orientation of their elements relative to the motion axis and can account for the range of speed for which this perceptual effect occurs (Georges, Seriès, Frégnac and Lorenceau, this issue).


Frontiers in Human Neuroscience | 2013

Learning what to expect (in visual perception)

Peggy Seriès; Aaron R. Seitz

Expectations are known to greatly affect our experience of the world. A growing theory in computational neuroscience is that perception can be successfully described using Bayesian inference models and that the brain is “Bayes-optimal” under some constraints. In this context, expectations are particularly interesting, because they can be viewed as prior beliefs in the statistical inference process. A number of questions remain unsolved, however, for example: How fast do priors change over time? Are there limits in the complexity of the priors that can be learned? How do an individual’s priors compare to the true scene statistics? Can we unlearn priors that are thought to correspond to natural scene statistics? Where and what are the neural substrate of priors? Focusing on the perception of visual motion, we here review recent studies from our laboratories and others addressing these issues. We discuss how these data on motion perception fit within the broader literature on perceptual Bayesian priors, perceptual expectations, and statistical and perceptual learning and review the possible neural basis of priors.


Neural Computation | 2012

Fisher and shannon information in finite neural populations

Stuart Yarrow; Edward Challis; Peggy Seriès

The precision of the neural code is commonly investigated using two families of statistical measures: Shannon mutual information and derived quantities when investigating very small populations of neurons and Fisher information when studying large populations. These statistical tools are no longer the preserve of theorists and are being applied by experimental research groups in the analysis of empirical data. Although the relationship between information-theoretic and Fisher-based measures in the limit of infinite populations is relatively well understood, how these measures compare in finite-size populations has not yet been systematically explored. We aim to close this gap. We are particularly interested in understanding which stimuli are best encoded by a given neuron within a population and how this depends on the chosen measure. We use a novel Monte Carlo approach to compute a stimulus-specific decomposition of the mutual information (the SSI) for populations of up to 256 neurons and show that Fisher information can be used to accurately estimate both mutual information and SSI for populations of the order of 100 neurons, even in the presence of biologically realistic variability, noise correlations, and experimentally relevant integration times. According to both measures, the stimuli that are best encoded are those falling at the flanks of the neurons tuning curve. In populations of fewer than around 50 neurons, however, Fisher information can be misleading.


Journal of Computational Neuroscience | 2012

The effect of neural adaptation on population coding accuracy

Jesús M. Cortés; Daniele Marinazzo; Peggy Seriès; Mike W. Oram; Terrence J. Sejnowski; Mark C. W. van Rossum

Most neurons in the primary visual cortex initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. The functional consequences of adaptation are unclear. Typically a reduction of firing rate would reduce single neuron accuracy as less spikes are available for decoding, but it has been suggested that on the population level, adaptation increases coding accuracy. This question requires careful analysis as adaptation not only changes the firing rates of neurons, but also the neural variability and correlations between neurons, which affect coding accuracy as well. We calculate the coding accuracy using a computational model that implements two forms of adaptation: spike frequency adaptation and synaptic adaptation in the form of short-term synaptic plasticity. We find that the net effect of adaptation is subtle and heterogeneous. Depending on adaptation mechanism and test stimulus, adaptation can either increase or decrease coding accuracy. We discuss the neurophysiological and psychophysical implications of the findings and relate it to published experimental data.


Vision Research | 2011

Similar neural adaptation mechanisms underlying face gender and tilt aftereffects

Chen (Roger) Zhao; Peggy Seriès; Peter J. B. Hancock; James A. Bednar

Visual aftereffects have been found for a wide variety of stimuli, ranging from oriented lines to human faces, but previous results suggested that face aftereffects were qualitatively different from orientation (tilt) aftereffects. Using computational models, we predicted that these differences were due to the limited range of faces used in previous studies. Here we report psychophysical results verifying this prediction. We used the same paradigm to test tilt aftereffects (TAE) and face gender aftereffects (FAE) and found that they exhibited qualitatively similar aftereffect curves, when a sufficiently large range of test faces was used. Overall, the results suggest that similar adaptation mechanisms may underlie both high-level and low-level visual processing.


PLOS ONE | 2013

Elucidating Poor Decision-Making in a Rat Gambling Task

Marion Rivalan; Vincent Valton; Peggy Seriès; Alain R. Marchand; Françoise Dellu-Hagedorn

Although poor decision-making is a hallmark of psychiatric conditions such as attention deficit/hyperactivity disorder, pathological gambling or substance abuse, a fraction of healthy individuals exhibit similar poor decision-making performances in everyday life and specific laboratory tasks such as the Iowa Gambling Task. These particular individuals may provide information on risk factors or common endophenotypes of these mental disorders. In a rodent version of the Iowa gambling task – the Rat Gambling Task (RGT), we identified a population of poor decision makers, and assessed how these rats scored for several behavioral traits relevant to executive disorders: risk taking, reward seeking, behavioral inflexibility, and several aspects of impulsivity. First, we found that poor decision-making could not be well predicted by single behavioral and cognitive characteristics when considered separately. By contrast, a combination of independent traits in the same individual, namely risk taking, reward seeking, behavioral inflexibility, as well as motor impulsivity, was highly predictive of poor decision-making. Second, using a reinforcement-learning model of the RGT, we confirmed that only the combination of extreme scores on these traits could induce maladaptive decision-making. Third, the model suggested that a combination of these behavioral traits results in an inaccurate representation of rewards and penalties and inefficient learning of the environment. Poor decision-making appears as a consequence of the over-valuation of high-reward-high-risk options in the task. Such a specific psychological profile could greatly impair clinically healthy individuals in decision-making tasks and may predispose to mental disorders with similar symptoms.


PLOS Computational Biology | 2013

Charles Bonnet Syndrome: Evidence for a Generative Model in the Cortex?

David P. Reichert; Peggy Seriès; Amos J. Storkey

Several theories propose that the cortex implements an internal model to explain, predict, and learn about sensory data, but the nature of this model is unclear. One condition that could be highly informative here is Charles Bonnet syndrome (CBS), where loss of vision leads to complex, vivid visual hallucinations of objects, people, and whole scenes. CBS could be taken as indication that there is a generative model in the brain, specifically one that can synthesise rich, consistent visual representations even in the absence of actual visual input. The processes that lead to CBS are poorly understood. Here, we argue that a model recently introduced in machine learning, the deep Boltzmann machine (DBM), could capture the relevant aspects of (hypothetical) generative processing in the cortex. The DBM carries both the semantics of a probabilistic generative model and of a neural network. The latter allows us to model a concrete neural mechanism that could underlie CBS, namely, homeostatic regulation of neuronal activity. We show that homeostatic plasticity could serve to make the learnt internal model robust against e.g. degradation of sensory input, but overcompensate in the case of CBS, leading to hallucinations. We demonstrate how a wide range of features of CBS can be explained in the model and suggest a potential role for the neuromodulator acetylcholine. This work constitutes the first concrete computational model of CBS and the first application of the DBM as a model in computational neuroscience. Our results lend further credence to the hypothesis of a generative model in the brain.


Vision Research | 2011

Perceptual learning in visual hyperacuity: A reweighting model

Grigorios Sotiropoulos; Aaron R. Seitz; Peggy Seriès

Improvements of visual hyperacuity are a key focus in research of perceptual learning. Of particular interest has been the specificity of visual hyperacuity learning to the particular features of the trained stimuli as well as disruption of learning that occurs in some cases when different stimulus features are trained together. The implications of these phenomena on the underlying learning mechanisms are still open to debate; however, there is a marked absence of computational models that explore these phenomena in a unified way. Here we implement a computational learning model based on reweighting and extend it to enable direct comparison, by means of simulations, with a variety of existing psychophysical data. We find that this very simple model can account for a diversity of findings, such as disruption of learning of one task by practice on a similar task, as well as transfer of learning across both tasks and stimulus configurations under certain conditions. These simulations help explain existing results in the literature as well as provide important insights and predictions regarding the reliability of different hyperacuity tasks and stimuli. Our simulations also shed light on the models limitations, for example in accounting for temporal aspects of training procedures or dependency of learning with contextual stimuli, which will need to be addressed by future research.

Collaboration


Dive into the Peggy Seriès's collaboration.

Top Co-Authors

Avatar

Aaron R. Seitz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Lorenceau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Frégnac

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge