Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pehr B. Harbury is active.

Publication


Featured researches published by Pehr B. Harbury.


Nature Structural & Molecular Biology | 2003

Automated design of specificity in molecular recognition

James J. Havranek; Pehr B. Harbury

Specific protein–protein interactions are crucial in signaling networks and for the assembly of multi-protein complexes, and represent a challenging goal for protein design. Optimizing interaction specificity requires both positive design, the stabilization of a desired interaction, and negative design, the destabilization of undesired interactions. Currently, no automated protein-design algorithms use explicit negative design to guide a sequence search. We describe a multi-state framework for engineering specificity that selects sequences maximizing the transfer free energy of a protein from a target conformation to a set of undesired competitor conformations. To test the multi-state framework, we engineered coiled-coil interfaces that direct the formation of either homodimers or heterodimers. The algorithm identified three specificity motifs that have not been observed in naturally occurring coiled coils. In all cases, experimental results confirm the predicted specificities.


Science | 2008

Remeasuring the Double Helix

Rebecca S. Mathew-Fenn; Rhiju Das; Pehr B. Harbury

DNA is thought to behave as a stiff elastic rod with respect to the ubiquitous mechanical deformations inherent to its biology. To test this model at short DNA lengths, we measured the mean and variance of end-to-end length for a series of DNA double helices in solution, using small-angle x-ray scattering interference between gold nanocrystal labels. In the absence of applied tension, DNA is at least one order of magnitude softer than measured by single-molecule stretching experiments. Further, the data rule out the conventional elastic rod model. The variance in end-to-end length follows a quadratic dependence on the number of base pairs rather than the expected linear dependence, indicating that DNA stretching is cooperative over more than two turns of the DNA double helix. Our observations support the idea of long-range allosteric communication through DNA structure.


PLOS Biology | 2004

DNA Display II. Genetic Manipulation of Combinatorial Chemistry Libraries for Small-Molecule Evolution

David R Halpin; Pehr B. Harbury

Biological in vitro selection techniques, such as RNA aptamer methods and mRNA display, have proven to be powerful approaches for engineering molecules with novel functions. These techniques are based on iterative amplification of biopolymer libraries, interposed by selection for a desired functional property. Rare, promising compounds are enriched over multiple generations of a constantly replicating molecular population, and subsequently identified. The restriction of such methods to DNA, RNA, and polypeptides precludes their use for small-molecule discovery. To overcome this limitation, we have directed the synthesis of combinatorial chemistry libraries with DNA “genes,” making possible iterative amplification of a nonbiological molecular species. By differential hybridization during the course of a traditional split-and-pool combinatorial synthesis, the DNA sequence of each gene is read out and translated into a unique small-molecule structure. This “chemical translation” provides practical access to synthetic compound populations 1 million-fold more complex than state-of-the-art combinatorial libraries. We carried out an in vitro selection experiment (iterated chemical translation, selection, and amplification) on a library of 106 nonnatural peptides. The library converged over three generations to a high-affinity protein ligand. The ability to genetically encode diverse classes of synthetic transformations enables the in vitro selection and potential evolution of an essentially limitless collection of compound families, opening new avenues to drug discovery, catalyst design, and the development of a materials science “biology.”


PLOS Biology | 2004

DNA Display I. Sequence-Encoded Routing of DNA Populations

David R Halpin; Pehr B. Harbury

Recently reported technologies for DNA-directed organic synthesis and for DNA computing rely on routing DNA populations through complex networks. The reduction of these ideas to practice has been limited by a lack of practical experimental tools. Here we describe a modular design for DNA routing genes, and routing machinery made from oligonucleotides and commercially available chromatography resins. The routing machinery partitions nanomole quantities of DNA into physically distinct subpools based on sequence. Partitioning steps can be iterated indefinitely, with worst-case yields of 85% per step. These techniques facilitate DNA-programmed chemical synthesis, and thus enable a materials biology that could revolutionize drug discovery.


PLOS Biology | 2004

DNA display III. Solid-phase organic synthesis on unprotected DNA.

David R Halpin; Juanghae A Lee; S. Jarrett Wrenn; Pehr B. Harbury

DNA-directed synthesis represents a powerful new tool for molecular discovery. Its ultimate utility, however, hinges upon the diversity of chemical reactions that can be executed in the presence of unprotected DNA. We present a solid-phase reaction format that makes possible the use of standard organic reaction conditions and common reagents to facilitate chemical transformations on unprotected DNA supports. We demonstrate the feasibility of this strategy by comprehensively adapting solid-phase 9-fluorenylmethyoxycarbonyl–based peptide synthesis to be DNA-compatible, and we describe a set of tools for the adaptation of other chemistries. Efficient peptide coupling to DNA was observed for all 33 amino acids tested, and polypeptides as long as 12 amino acids were synthesized on DNA supports. Beyond the direct implications for synthesis of peptide–DNA conjugates, the methods described offer a general strategy for organic synthesis on unprotected DNA. Their employment can facilitate the generation of chemically diverse DNA-encoded molecular populations amenable to in vitro evolution and genetic manipulation.


Molecular and Cellular Biology | 1989

Functional distinctions between yeast TATA elements.

Pehr B. Harbury; Kevin Struhl

Although the yeast his3 promoter region contains two functional TATA elements, TR and TC, the GCN4 and GAL4 upstream activator proteins stimulate transcription only through TR. In combination with GAL4, an oligonucleotide containing the sequence TATAAA is fully sufficient for TR function, whereas almost all single-base-pair substitutions of this sequence abolish the ability of this element to activate transcription. Further analysis of these and other mutations of the TR element led to the following conclusions. First, sequences downstream of the TATAAA sequence are important for TR function. Second, a double mutant, TATTTA, can serve as a TR element even though the corresponding single mutation, TATTAA, is unable to do so. Third, three mutations have the novel property of being able to activate transcription in combination with GCN4 but not with GAL4; this finding suggests that activation by GCN4 and by GAL4 may not occur by identical mechanisms. From these observations, we address the question of whether there is a single TATA-binding factor required for the transcription of all genes.


Journal of Molecular Biology | 2002

The equilibrium unfolding pathway of a (β/α)8 barrel

Joshua Silverman; Pehr B. Harbury

The (beta/alpha)(8) barrel is the most commonly occurring fold among enzymes. A key step towards rationally engineering (beta/alpha)(8) barrel proteins is to understand their underlying structural organization and folding energetics. Using misincorporation proton-alkyl exchange (MPAX), a new tool for solution structural studies of large proteins, we have performed a native-state exchange analysis of the prototypical (beta/alpha)(8) barrel triosephosphate isomerase. Three cooperatively unfolding subdomains within the structure are identified, as well as two partially unfolded forms of the protein. The C-terminal domain coincides with domains reported to exist in four other (beta/alpha)(8) barrels, but the two N-terminal domains have not been observed previously. These partially unfolded forms may represent sequential intermediates on the folding pathway of triosephosphate isomerase. The methods reported here should be applicable to a variety of other biological problems involving protein conformational changes.


PLOS ONE | 2008

A Molecular Ruler for Measuring Quantitative Distance Distributions

Rebecca S. Mathew-Fenn; Rhiju Das; Joshua Silverman; Peter Walker; Pehr B. Harbury

We report a novel molecular ruler for measurement of distances and distance distributions with accurate external calibration. Using solution X-ray scattering we determine the scattering interference between two gold nanocrystal probes attached site-specifically to a macromolecule of interest. Fourier transformation of the interference pattern provides a model-independent probability distribution for the distances between the probe centers-of-mass. To test the approach, we measure end-to-end distances for a variety of DNA structures. We demonstrate that measurements with independently prepared samples and using different X-ray sources are highly reproducible, we demonstrate the quantitative accuracy of the first and second moments of the distance distributions, and we demonstrate that the technique recovers complex distribution shapes. Distances measured with the solution scattering-interference ruler match the corresponding crystallographic values, but differ from distances measured previously with alternate ruler techniques. The X-ray scattering interference ruler should be a powerful tool for relating crystal structures to solution structures and for studying molecular fluctuations.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Accurate, conformation-dependent predictions of solvent effects on protein ionization constants

Patrick Barth; Tom Alber; Pehr B. Harbury

Predicting how aqueous solvent modulates the conformational transitions and influences the pKa values that regulate the biological functions of biomolecules remains an unsolved challenge. To address this problem, we developed FDPB_MF, a rotamer repacking method that exhaustively samples side chain conformational space and rigorously calculates multibody protein–solvent interactions. FDPB_MF predicts the effects on pKa values of various solvent exposures, large ionic strength variations, strong energetic couplings, structural reorganizations and sequence mutations. The method achieves high accuracy, with root mean square deviations within 0.3 pH unit of the experimental values measured for turkey ovomucoid third domain, hen lysozyme, Bacillus circulans xylanase, and human and Escherichia coli thioredoxins. FDPB_MF provides a faithful, quantitative assessment of electrostatic interactions in biological macromolecules.


Journal of Molecular Biology | 2008

Design of Protein-Ligand Binding Based on the Molecular-Mechanics Energy Model

F. Edward Boas; Pehr B. Harbury

While the molecular-mechanics field has standardized on a few potential energy functions, computational protein design efforts are based on potentials that are unique to individual laboratories. Here we show that a standard molecular-mechanics potential energy function without any modifications can be used to engineer protein-ligand binding. A molecular-mechanics potential is used to reconstruct the coordinates of various binding sites with an average root-mean-square error of 0.61 A and to reproduce known ligand-induced side-chain conformational shifts. Within a series of 34 mutants, the calculation can always distinguish between weak (K(d)>1 mM) and tight (K(d)<10 microM) binding sequences. Starting from partial coordinates of the ribose-binding protein lacking the ligand and the 10 primary contact residues, the molecular-mechanics potential is used to redesign a ribose-binding site. Out of a search space of 2 x 10(12) sequences, the calculation selects a point mutant of the native protein as the top solution (experimental K(d)=17 microM) and the native protein as the second best solution (experimental K(d)=210 nM). The quality of the predictions depends on the accuracy of the generalized Born electrostatics model, treatment of protonation equilibria, high-resolution rotamer sampling, a final local energy minimization step, and explicit modeling of the bound, unbound, and unfolded states. The application of unmodified molecular-mechanics potentials to protein design links two fields in a mutually beneficial way. Design provides a new avenue for testing molecular-mechanics energy functions, and future improvements in these energy functions will presumably lead to more accurate design results.

Collaboration


Dive into the Pehr B. Harbury's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter S. Kim

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Alber

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge