Pei-Hui Wang
Sun Yat-sen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pei-Hui Wang.
Developmental and Comparative Immunology | 2012
Pei-Hui Wang; Jian-ping Liang; Zhi-Hua Gu; Ding-Hui Wan; Shaoping Weng; Xiao-Qiang Yu; Jianguo He
Toll-like receptor-mediated NF-κB pathways are essential for inducing immune related-gene expression in the defense against bacterial, fungal and viral infections in insects and mammals. Although a Toll receptor (LvToll1) was cloned in Litopenaeus vannamei, relatively little is known about other types of Toll-like receptors and their endogenous cytokine-like ligand, Spätzle. Here, we report two novel Toll-like receptors (LvToll2 and LvToll3) and three Spätzle-like proteins (LvSpz1-3) from L. vannamei. LvToll2 has 1009 residues with an extracellular domain containing 18 leucine-rich repeats (LRRs) and a cytoplasmic Toll/interleukin-1 receptor (TIR) domain of 139 residues. LvToll3 is 1244 residues long with an extracellular domain containing 23 LRRs and a cytoplasmic TIR domain of 138 residues. The Spätzle-like proteins LvSpz1, LvSpz2 and LvSpz3 are 237, 245 and 275 residues in length, respectively, and all of them have a putative C-terminal cystine-knot domain. In Drosophila Schneider 2 (S2) cells, LvToll1 and LvToll3 were localized to the membrane and cytoplasm, and LvToll2 was confined to the cytoplasm. In Drosophila S2 cells, LvToll2 could significantly activate the promoters of NF-κB-pathway-controlled antimicrobial peptide genes, whereas LvToll1 and LvToll3 had no effect on them. LvSpz1 exerted some degree of inhibition on the promoter activities of Drosophila Attacin A and L. vannamei Penaeidin4. LvSpz3 also inhibited the Drosophila Attacin A promoter, but LvSpz2 could only slightly activate it. LvToll1, LvToll2 and LvToll3 were constitutive expressed in various tissues, while LvSpz1, LvSpz2 and LvSpz3 exhibited tissue-specific expression in the epithelium, eyestalk, intestine, gill and muscle. In the gill, after Vibrio alginolyticus challenge, LvToll1 was upregulated, but LvToll2 and LvToll3 showed no obvious changes. LvSpz1 and LvSpz3 were also strongly induced by V. alginolyticus challenge, but LvSpz2 only showed a slight downregulation. In the gill, after white spot syndrome virus (WSSV) challenge, LvToll1, LvToll2, LvToll3, LvSpz1 and LvSpz3 were upregulated, but LvSpz2 showed no obvious change, except for a slight downregulation at 12h post-injection of WSSV. These findings might be valuable in understanding the innate immune signal pathways of shrimp and enabling future studies on the host-pathogen interactions in V. alginolyticus and WSSV infections.
PLOS ONE | 2011
Pei-Hui Wang; Zhi-Hua Gu; Ding-Hui Wan; Ming-Yan Zhang; Shaoping Weng; Xiao-Qiang Yu; Jian Guo He
The Toll-like receptor (TLR)-mediated NF-κB pathway is essential for defending against viruses in insects and mammals. Viruses also develop strategies to utilize this pathway to benefit their infection and replication in mammal hosts. In invertebrates, the TLR-mediated NF-κB pathway has only been well-studied in insects and has been demonstrated to be important in antiviral responses. However, there are few reports of interactions between viruses and the TLR-mediated NF-κB pathway in invertebrate hosts. Here, we studied Litopenaeus vannamei Pelle, which is the central regulator of the Toll pathway, and proposed that a similar TLR/MyD88/Tube/Pelle/TRAF6/NF-κB cascade may exist in shrimp for immune gene regulation. After performing genome-wild analysis of white spot syndrome virus (WSSV) encoded proteins, we found that WSSV449 shows 15.7-19.4% identity to Tube, which is an important component of the insect Toll pathway. We further found that WSSV449 activated promoters of Toll pathway-controlled antimicrobial peptide genes, indicating WSSV449 has a similar function to host Tube in activating the NF-κB pathway. We suspected that WSSV449 activated the Toll-mediated NF-κB pathway for regulating viral gene expression. To test this hypothesis, we analyzed the promoters of viral genes and found 40 promoters that possess NF-κB binding sites. A promoter screen showed that the promoter activities of WSSV069 (ie1), WSSV303 and WSSV371 can be highly induced by the shrimp NF-κB family protein LvDorsal. WSSV449 also induced these three viral promoter activities by activating the NF-κB pathway. To our knowledge, this is the first report of a virus that encodes a protein similar to the Toll pathway component Tube to upregulate gene expression in the invertebrate host.
Developmental and Comparative Immunology | 2011
Pei-Hui Wang; Ding-Hui Wan; Zhi-Hua Gu; Xiexiong Deng; Shaoping Weng; Xiao-Qiang Yu; Jianguo He
Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is a key signaling adaptor protein not only for the TNFR superfamily but also for the Interleukin-1 receptor/Toll-like receptor (IL-1/TLR) superfamily. To investigate TRAF6 function in invertebrate innate immune responses, Litopenaeus vannamei TRAF6 (LvTRAF6) was identified and characterized. The full-length cDNA of LvTRAF6 is 2823bp long, with an open reading frame (ORF) encoding a putative protein of 594 amino acids, including a RING-type Zinc finger, two TRAF-type Zinc fingers, a coiled-coil region, and a meprin and TRAF homology (MATH) domain. The overall amino acid sequence identity between LvTRAF6 and other known TRAF6s is 22.2-33.3%. Dual luciferase reporter assays in Drosophila S2 cells revealed that LvTRAF6 could activate the promoters of antimicrobial peptide genes (AMPs), including Drosophila Attacin A and Drosomycin, and shrimp Penaeidins. Real-time quantitative PCR (qPCR) indicated that LvTRAF6 was constitutively expressed in various tissues of L. vannamei. After Vibrio alginolyticus and white spot syndrome virus (WSSV) challenge, LvTRAF6 was down-regulated, though with different expression patterns in the intestine compared to other tissues. After WSSV challenge, LvTRAF6 was up-regulated 2.7- and 2.3-fold over the control at 3h in gills and hepatopancreas, respectively. These results indicated that LvTRAF6 may play a crucial role in antibacterial and antiviral responses via regulation of AMP gene expression.
Molecular Immunology | 2009
Pei-Hui Wang; Zhi-Hua Gu; Xian-De Huang; Bo-Du Liu; Xiexiong Deng; Hua-Shui Ai; Jing Wang; Zhi-Xin Yin; Shaoping Weng; Xiao-Qiang Yu; Jianguo He
Invertebrates rely on innate immunity as the first line defense against microbes. In Drosophila, the inducible antimicrobial peptides (AMPs) regulated by the Toll and immune deficiency (Imd) pathways are important effectors in innate immunity. Here we report an immune deficiency homolog (LvIMD) from the white shrimp, Litopenaeus vannamei. The full-length cDNA of LvIMD is 758 bp with an open reading frame of 483 bp that encodes a putative protein of 160 amino acids including a death domain at the C-terminus. LvIMD death domain shows similarity to that of Drosophila IMD and human receptor interacting protein 1 (RIP1) of the tumor necrosis factor receptor (TNFR) pathway, with 27.9% and 26.4% identity, respectively. Phylogenetic analysis shows that LvIMD clusters with a predicted protein from the starlet sea anemone (Nematostella vectensis) independent to insect IMDs and vertebrates RIP1s. LvIMD mRNA is expressed in most tissues and is induced in hepatopancreas and hemocytes after immune challenge. Luciferase reporter assays confirm that LvIMD is able to induce the expression of AMP genes, including Drosophila Attacin A and shrimp Penaeidin 4 in S2 cells. To our knowledge, this is the first report that LvIMD participates in innate signaling to activate the expression of AMP genes in shrimp.
Developmental and Comparative Immunology | 2012
Pei-Hui Wang; Ding-Hui Wan; Li-Ran Pang; Zhi-Hua Gu; Wei Qiu; Shaoping Weng; Xiao-Qiang Yu; Jianguo He
In vertebrates, the tumor necrosis factor (TNF)-receptor (TNFR) system participates in diverse physiological and pathological events, such as inflammation and protective immune responses to microbial infections. There are few reports about the role of the invertebrate TNF-TNFR system in immune responses. Here, we isolated and characterized the TNF superfamily (LvTNFSF) gene, TNFR superfamily (LvTNFRSF) gene and lipopolysaccharide-induced TNF-α factor (LvLITAF) gene from Litopenaeus vannamei. LvTNFSF consists of 472 amino acids with a conserved C-terminal TNF domain and has 89.8% identity with the Marsupenaeus japonicus TNF superfamily gene. LvTNFRSF consists of 296 amino acids with a conserved TNFR domain and has 18.0% identity with Chlamys farreri TNFR, 14.6% identity with Drosophila melanogaster Wengen and 14.6% identity with Homo sapiens TNFR1. LvLITAF consists of 124 amino acids with the LITAF domain and shows 62.6% identity with D. melanogaster LITAF and 32.3% identity with H. sapiens LITAF. The promoter region of LvTNFSF was cloned and used to construct a luciferase reporter. In Drosophila S2 cells, the promoter of LvTNFSF can be activated by LvLITAF, L. vannamei NF-κB family proteins (LvRelish and LvDorsal) and LvSTAT. Unlike its mammalian counterparts, LvTNFRSF could not activate the NF-κB pathway in Drosophila S2 cells. Using real-time quantitative PCR, we obtained expression profiles of LvTNFSF, LvTNFRSF and LvLITAF in the gill, intestine and hepatopancreas of L. vannamei after challenge with Gram-negative Vibrio alginolyticus, Gram-positive Staphylococcus aureus, the fungus Candida albicans and white spot syndrome virus (WSSV). Taken together, our results reveal that LvTNFSF, LvTNFRSF and LvLITAF may be involved in shrimp immune responses to pathogenic infections.
Virology | 2010
Xian-De Huang; Li Zhao; Haiqing Zhang; Xiaopeng Xu; Xiao-Ting Jia; Yi-Hong Chen; Pei-Hui Wang; Shaoping Weng; Xiao-Qiang Yu; Zhi-Xin Yin; Jianguo He
The immediate-early gene ie1 carried by white spot syndrome virus (WSSV) exhibits very strong promoter activity and expresses highly throughout the infection cycle. Here we identified a NF-κB binding motif in the ie1 promoter region. Electrophoretic mobility shift assays indicated that the recombinant Rel homology domain (RHD) of shrimp NF-κB homolog LvRelish bound to the putative NF-κB site in the ie1 promoter. A transactivity assay of the WSSV ie1 promoter in Drosophila Schneider 2 cells demonstrated that LvRelish could increase ie1 promoter activity. These results show that shrimp NF-κB homolog LvRelish transactivates WSSV ie1 gene expression and contributes to its high promoter activity. Further transactivation assays showed that WSSV IE1 protein expression upregulated the promoter activities of WSSV ie1 gene and antimicrobial peptide genes regulated by the NF-κB system. We suggested that WSSV may annex the shrimp NF-κB system, which it uses to enhance the expression of viral immediate-early genes.
PLOS ONE | 2012
Shuang Zhang; Chaozheng Li; Hui Yan; Wei Qiu; Yonggui Chen; Pei-Hui Wang; Shaoping Weng; Jianguo He
Myeloid differentiation factor 88 (MyD88) is a universal and essential signaling protein in Toll-like receptor/interleukin-1 receptor-induced activation of nuclear factor-kappa B. In this study, two MyD88 protein variants (LvMyD88 and LvMyD88-1) were identified in Litopenaeus vannamei. The LvMyD88 cDNA is 1,848 bp in length and contains an open reading frame (ORF) of 1,428 bp, whereas the LvMyD88-1 cDNA is 1,719 bp in length and has an ORF of 1,299 bp. Both variants encode proteins with death and Toll/interleukin-1 receptor domains and share 91% sequence identity. In healthy L. vannamei, the LvMyD88 genes were highly expressed in hemocytes but at a low level in the hepatopancreas. The LvMyD88s expression was induced in hemocytes after challenge with lipopolysaccharide, CpG-ODN2006, Vibrio parahaemolyticus, Staphyloccocus aureus, and white spot syndrome virus, but not by poly I∶C. Overexpression of LvMyD88 and LvMyD88-1 in Drosophila Schneider 2 cells led to activation of antimicrobial peptide genes and wsv069 (ie1), wsv303, and wsv371. These results suggested that LvMyD88 may play a role in antibacterial and antiviral response in L. vannamei. To our knowledge, this is the first report on MyD88 in shrimp and a variant of MyD88 gene in invertebrates.
Cellular & Molecular Immunology | 2013
Pei-Hui Wang; Zhi-Hua Gu; Ding-Hui Wan; Bo-Du Liu; Xian-De Huang; Shaoping Weng; Xiao-Qiang Yu; Jianguo He
The IκB kinases IKKα and IKKβ and the IKK-related kinases TANK-binding kinase 1 (TBK1) and IKKε are the master regulators of the NF-κB signaling pathway. Although this pathway has been extensively studied in mammals, less attention has been paid in crustaceans, which have significant economic value. Here, we report the cloning and functional studies of two IKK homologs, LvIKKβ and LvIKKε, from Pacific white shrimp, Litopenaeus vannamei. LvIKKβ and LvIKKε mRNAs are widely expressed in different tissues and are responsive to white spot syndrome virus (WSSV) infection. When overexpressed in Drosophila S2 cells, LvIKKβ but not LvIKKε activates the promoters of NF-κB pathway-controlled antimicrobial peptide genes (AMPs), such as the Penaeidins (PENs). In HEK 293T cells, both LvIKKβ and LvIKKε activate an NF-κB reporter. The silencing of LvIKKβ or LvIKKε using double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) decreases the expression of L. vannamei AMPs, including PENs, lysozyme and crustins. Intriguingly, LvIKKβ- or LvIKKε-silenced L. vannamei are resistant to WSSV infection. We hypothesized that successful infection with WSSV requires the activation of the IKK–NF-κB signaling pathway to modulate viral gene expression. We constructed luciferase reporters for 147 WSSV genes. By screening, we found that the WSV051, WSV059, WSV069, WSV083, WSV090, WSV107, WSV244, WSV303, WSV371 and WSV445 promoters can be activated by LvIKKβ or LvIKKε in Drosophila S2 cells. Taken together, our results reveal that LvIKKβ and LvIKKε may participate in the regulation of shrimp AMPs and that WSSV may subvert the L. vannamei IKK–NF-κB signaling pathway to facilitate viral gene expression.
Antiviral Research | 2014
Pei-Hui Wang; Tianzhi Huang; Xiaobo Zhang; Jianguo He
The culture of penaeid shrimp is rapidly developing as a major business endeavor worldwide. However, viral diseases have caused huge economic loss in penaeid shrimp culture industries. Knowledge of shrimp innate immunity and antiviral responses has made important progress in recent years, allowing the design of better strategies for the prevention and control of shrimp diseases. In this study, we have updated information on shrimp antiviral immunity and interactions between shrimp hosts and viral pathogens. Current knowledge and recent progress in immune signaling pathways (e.g., Toll/IMD-NF-κB and JAK-STAT signaling pathways), RNAi, phagocytosis, and apoptosis in shrimp antiviral immunity are discussed. The mechanism of viral infection in shrimp hosts and the interactions between viruses and shrimp innate immune systems are also analyzed.
Developmental and Comparative Immunology | 2014
Wei Qiu; Shuang Zhang; Yonggui Chen; Pei-Hui Wang; Xiaopeng Xu; Chaozheng Li; Yi-Hong Chen; Wen-Zhou Fan; Hui Yan; Shaoping Weng; Siuming FrancisChan; Jianguo He
Many viruses can hijack the host cell NF-κB as part of their life cycle, diverting NF-κB immune regulatory functions to favor their replications. There were several reports on the functions of Litopenaeus vannamei NF-κB (LvNF-κB) in White spot syndrome virus (WSSV) replication in vitro. Here, we studied the relationship between LvNF-κB family protein Dorsal (LvDorsal) and Relish (LvRelish) with WSSV replication in vivo. The expressions of LvDorsal and LvRelish were significantly upregulated by WSSV challenge. Virus loads and expression of viral envelope protein VP28 in LvDorsal or LvRelish silencing shrimps were significantly lower than the control shrimps injected with EGFP-dsRNA or PBS after challenge with 1×10(5) copies WSSV/shrimp. In addition to the LvDorsal activation of WSV069 (ie1) and WSV303 promoter that we have reported, LvRelish can also activate WSV069 (ie1) and WSV303 promoter by dual luciferase reporter assays through screening 40 WSSV gene promoters that have putative multiple NF-κB binding sites. The promoter activity of the WSV069 (ie1) by LvDorsal activation was significantly higher than that by LvRelish activation. WSSV replication in LvDorsal, LvRelish or WSV303 silencing shrimps were significantly inhibited. These results indicate that the L. vannamei NF-κB family proteins LvDorsal and LvRelish expressions are significantly activated by WSSV challenge and WSSV replication partially relied on the activations of LvDorsal and LvRelish in vivo.