Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pei Yong Shi is active.

Publication


Featured researches published by Pei Yong Shi.


Cell | 2016

Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure

Xuyu Qian; Ha Nam Nguyen; Mingxi M. Song; Christopher Hadiono; Sarah C. Ogden; Christy Hammack; Bing Yao; Gregory R. Hamersky; Fadi Jacob; Chun Zhong; Ki Jun Yoon; William Jeang; Li Lin; Yujing Li; Jai Thakor; Daniel A. Berg; Ce Zhang; Eunchai Kang; Michael Chickering; David Nauen; Cheng Ying Ho; Zhexing Wen; Kimberly M. Christian; Pei Yong Shi; Brady J. Maher; Hao Wu; Peng Jin; Hengli Tang; Hongjun Song; Guo Li Ming

Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.


Nature | 2010

2′- O methylation of the viral mRNA cap evades host restriction by IFIT family members

Stephane Daffis; Kristy J. Szretter; Jill Schriewer; Jianqing Li; Soonjeon Youn; John S. Errett; Tsai-Yu Lin; Stewart W. Schneller; Roland Züst; Hongping Dong; Volker Thiel; Ganes C. Sen; Volker Fensterl; William B. Klimstra; Theodore C. Pierson; R. Mark L. Buller; Michael Gale; Pei Yong Shi; Michael S. Diamond

Cellular messenger RNA (mRNA) of higher eukaryotes and many viral RNAs are methylated at the N-7 and 2′-O positions of the 5′ guanosine cap by specific nuclear and cytoplasmic methyltransferases (MTases), respectively. Whereas N-7 methylation is essential for RNA translation and stability, the function of 2′-O methylation has remained uncertain since its discovery 35 years ago. Here we show that a West Nile virus (WNV) mutant (E218A) that lacks 2′-O MTase activity was attenuated in wild-type primary cells and mice but was pathogenic in the absence of type I interferon (IFN) signalling. 2′-O methylation of viral RNA did not affect IFN induction in WNV-infected fibroblasts but instead modulated the antiviral effects of IFN-induced proteins with tetratricopeptide repeats (IFIT), which are interferon-stimulated genes (ISGs) implicated in regulation of protein translation. Poxvirus and coronavirus mutants that lacked 2′-O MTase activity similarly showed enhanced sensitivity to the antiviral actions of IFN and, specifically, IFIT proteins. Our results demonstrate that the 2′-O methylation of the 5′ cap of viral RNA functions to subvert innate host antiviral responses through escape of IFIT-mediated suppression, and suggest an evolutionary explanation for 2′-O methylation of cellular mRNA: to distinguish self from non-self RNA. Differential methylation of cytoplasmic RNA probably serves as an example for pattern recognition and restriction of propagation of foreign viral RNA in host cells.


Journal of Virology | 2006

West Nile Virus 5′-Cap Structure Is Formed by Sequential Guanine N-7 and Ribose 2′-O Methylations by Nonstructural Protein 5

Debashish Ray; Aaloki Shah; Mark Tilgner; Yi Guo; Yiwei Zhao; Hongping Dong; Tia S. Deas; Yangsheng Zhou; Hongmin Li; Pei Yong Shi

ABSTRACT Many flaviviruses are globally important human pathogens. Their plus-strand RNA genome contains a 5′-cap structure that is methylated at the guanine N-7 and the ribose 2′-OH positions of the first transcribed nucleotide, adenine (m7GpppAm). Using West Nile virus (WNV), we demonstrate, for the first time, that the nonstructural protein 5 (NS5) mediates both guanine N-7 and ribose 2′-O methylations and therefore is essential for flavivirus 5′-cap formation. We show that a recombinant full-length and a truncated NS5 protein containing the methyltransferase (MTase) domain methylates GpppA-capped and m7GpppA-capped RNAs to m7GpppAm-RNA, using S-adenosylmethionine as a methyl donor. Furthermore, methylation of GpppA-capped RNA sequentially yielded m7GpppA- and m7GpppAm-RNA products, indicating that guanine N-7 precedes ribose 2′-O methylation. Mutagenesis of a K61-D146-K182-E218 tetrad conserved in other cellular and viral MTases suggests that NS5 requires distinct amino acids for its N-7 and 2′-O MTase activities. The entire K61-D146-K182-E218 motif is essential for 2′-O MTase activity, whereas N-7 MTase activity requires only D146. The other three amino acids facilitate, but are not essential for, guanine N-7 methylation. Amino acid substitutions within the K61-D146-K182-E218 motif in a WNV luciferase-reporting replicon significantly reduced or abolished viral replication in cells. Additionally, the mutant MTase-mediated replication defect could not be trans complemented by a wild-type replicase complex. These findings demonstrate a critical role for the flavivirus MTase in viral reproduction and underscore this domain as a potential target for antiviral therapy.


Journal of Virology | 2005

Inhibition of Interferon Signaling by the New York 99 Strain and Kunjin Subtype of West Nile Virus Involves Blockage of STAT1 and STAT2 Activation by Nonstructural Proteins

Wen Jun Liu; Xiang Ju Wang; Vladislav V. Mokhonov; Pei Yong Shi; Richard E. Randall; Alexander A. Khromykh

ABSTRACT The interferon (IFN) response is the first line of defense against viral infections, and the majority of viruses have developed different strategies to counteract IFN responses in order to ensure their survival in an infected host. In this study, the abilities to inhibit IFN signaling of two closely related West Nile viruses, the New York 99 strain (NY99) and Kunjin virus (KUN), strain MRM61C, were analyzed using reporter plasmid assays, as well as immunofluorescence and Western blot analyses. We have demonstrated that infections with both NY99 and KUN, as well as transient or stable transfections with their replicon RNAs, inhibited the signaling of both alpha/beta IFN (IFN-α/β) and gamma IFN (IFN-γ) by blocking the phosphorylation of STAT1 and its translocation to the nucleus. In addition, the phosphorylation of STAT2 and its translocation to the nucleus were also blocked by KUN, NY99, and their replicons in response to treatment with IFN-α. IFN-α signaling and STAT2 translocation to the nucleus was inhibited when the KUN nonstructural proteins NS2A, NS2B, NS3, NS4A, and NS4B, but not NS1 and NS5, were expressed individually from the pcDNA3 vector. The results clearly demonstrate that both NY99 and KUN inhibit IFN signaling by preventing STAT1 and STAT2 phosphorylation and identify nonstructural proteins responsible for this inhibition.


Journal of Virology | 2009

NS5 of Dengue Virus Mediates STAT2 Binding and Degradation

Joseph Ashour; Maudry Laurent-Rolle; Pei Yong Shi; Adolfo García-Sastre

ABSTRACT The mammalian interferon (IFN) signaling pathway is a primary component of the innate antiviral response. As such, viral pathogens have devised multiple mechanisms to antagonize this pathway and thus facilitate infection. Dengue virus (DENV) encodes several proteins (NS2a, NS4a, and NS4b) that have been shown individually to inhibit the IFN response. In addition, DENV infection results in reduced levels of expression of STAT2, which is required for IFN signaling (M. Jones, A. Davidson, L. Hibbert, P. Gruenwald, J. Schlaak, S. Ball, G. R. Foster, and M. Jacobs, J. Virol. 79:5414-5420, 2005). Translation of the DENV genome results in a single polypeptide, which is processed by viral and host proteases into at least 10 separate proteins. To date, no single DENV protein has been implicated in the targeting of STAT2 for decreased levels of expression. We demonstrate here that the polymerase of the virus, NS5, binds to STAT2 and is necessary and sufficient for its reduced level of expression. The decrease in protein level observed requires ubiquitination and proteasome activity, strongly suggesting an active degradation process. Furthermore, we show that the degradation of but not binding to STAT2 is dependent on the expression of the polymerase in the context of a polyprotein that undergoes proteolytic processing for NS5 maturation. Thus, the mature form of NS5, when not expressed as a precursor, was able to bind to STAT2 but was unable to target it for degradation, establishing a unique role for viral polyprotein processing in providing an additional function to a viral polypeptide. Therefore, we have identified both a novel mechanism by which DENV evades the innate immune response and a potential target for antiviral therapeutics.


Journal of Virology | 2007

Structure and function of flavivirus NS5 methyltransferase

Yangsheng Zhou; Debashish Ray; Yiwei Zhao; Hongping Dong; Suping Ren; Zhong Li; Yi Guo; Kristen A. Bernard; Pei Yong Shi; Hongmin Li

ABSTRACT The plus-strand RNA genome of flavivirus contains a 5′ terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2′-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA → m7GpppA → m7GpppAm. The 2′-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 Å resolution showed a single binding site for S-adenosyl-l-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2′-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2′-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2′-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.


Antiviral Research | 2016

Zika virus: History, emergence, biology, and prospects for control

Scott C. Weaver; Federico Costa; Mariano A. Garcia-Blanco; Albert I. Ko; Guilherme S. Ribeiro; George R. Saade; Pei Yong Shi; Nikos Vasilakis

Zika virus (ZIKV), a previously obscure flavivirus closely related to dengue, West Nile, Japanese encephalitis and yellow fever viruses, has emerged explosively since 2007 to cause a series of epidemics in Micronesia, the South Pacific, and most recently the Americas. After its putative evolution in sub-Saharan Africa, ZIKV spread in the distant past to Asia and has probably emerged on multiple occasions into urban transmission cycles involving Aedes (Stegomyia) spp. mosquitoes and human amplification hosts, accompanied by a relatively mild dengue-like illness. The unprecedented numbers of people infected during recent outbreaks in the South Pacific and the Americas may have resulted in enough ZIKV infections to notice relatively rare congenital microcephaly and Guillain-Barré syndromes. Another hypothesis is that phenotypic changes in Asian lineage ZIKV strains led to these disease outcomes. Here, we review potential strategies to control the ongoing outbreak through vector-centric approaches as well as the prospects for the development of vaccines and therapeutics.


Journal of Clinical Microbiology | 2001

High-Throughput Detection of West Nile Virus RNA

Pei Yong Shi; Elizabeth B. Kauffman; Ping Ren; Andy Felton; Jennifer H. Tai; Alan P. Dupuis; Susan A. Jones; Kiet A. Ngo; David Nicholas; Joseph G. Maffei; Gregory D. Ebel; Kristen A. Bernard; Laura D. Kramer

ABSTRACT The recent outbreaks of West Nile virus (WNV) in the northeastern United States and other regions of the world have made it essential to develop an efficient protocol for surveillance of WNV. In the present report, we describe a high-throughput procedure that combines automated RNA extraction, amplification, and detection of WNV RNA. The procedure analyzed 96 samples in approximately 4.5 h. A robotic system, the ABI Prism 6700 Automated Nucleic Acid workstation, extracted RNA and set up reactions for real-time reverse transcription (RT)-PCR in a 96-well format. The robot extracted RNA with a recovery as efficient as that of a commercial RNA extraction kit. A real-time RT-PCR assay was used to detect and quantitate WNV RNA. Using in vitro transcribed RNA, we estimated the detection limit of the real-time RT-PCR to be approximately 40 copies of RNA. A standard RT-PCR assay was optimized to a sensitivity similar to that of the real-time RT-PCR. The standard assay can be reliably used to test a small number of samples or to confirm previous test results. Using internal primers in a nested RT-PCR, we increased the sensitivity by approximately 10-fold compared to that of the standard RT-PCR. The results of the study demonstrated for the first time that the use of an automated system for the purpose of large-scale viral RNA surveillance dramatically increased the speed and efficiency of sample throughput for diagnosis.


Journal of Virology | 2010

Identification of Five Interferon-Induced Cellular Proteins That Inhibit West Nile Virus and Dengue Virus Infections

Dong Jiang; Jessica M. Weidner; Min Qing; Xiao Ben Pan; Haitao Guo; Chunxiao Xu; Xianchao Zhang; Alex Birk; Jinhong Chang; Pei Yong Shi; Timothy M. Block; Ju Tao Guo

ABSTRACT Interferons (IFNs) are key mediators of the host innate antiviral immune response. To identify IFN-stimulated genes (ISGs) that instigate an antiviral state against two medically important flaviviruses, West Nile virus (WNV) and dengue virus (DENV), we tested 36 ISGs that are commonly induced by IFN-α for antiviral activity against the two viruses. We discovered that five ISGs efficiently suppressed WNV and/or DENV infection when they were individually expressed in HEK293 cells. Mechanistic analyses revealed that two structurally related cell plasma membrane proteins, IFITM2 and IFITM3, disrupted early steps (entry and/or uncoating) of the viral infection. In contrast, three IFN-induced cellular enzymes, viperin, ISG20, and double-stranded-RNA-activated protein kinase, inhibited steps in viral proteins and/or RNA biosynthesis. Our results thus imply that the antiviral activity of IFN-α is collectively mediated by a panel of ISGs that disrupt multiple steps of the DENV and WNV life cycles.


Proceedings of the National Academy of Sciences of the United States of America | 2009

An adenosine nucleoside inhibitor of dengue virus

Zheng Yin; Yen Liang Chen; Wouter Schul; Qing Yin Wang; Feng Gu; Jeyaraj Duraiswamy; Ravinder Reddy Kondreddi; Pornwaratt Niyomrattanakit; Suresh B. Lakshminarayana; Anne Goh; Hao Ying Xu; Wei Liu; Boping Liu; Joanne Y H Lim; Chuan Young Ng; Min Qing; Chin Chin Lim; Andy Yip; Gang Wang; Wai Ling Chan; Hui Pen Tan; Kai Lin; Bo Zhang; Gang Zou; Kristen A. Bernard; Christine E. Garrett; Karen Beltz; Min Dong; Margaret Weaver; Handan He

Dengue virus (DENV), a mosquito-borne flavivirus, is a major public health threat. The virus poses risk to 2.5 billion people worldwide and causes 50 to 100 million human infections each year. Neither a vaccine nor an antiviral therapy is currently available for prevention and treatment of DENV infection. Here, we report a previously undescribed adenosine analog, NITD008, that potently inhibits DENV both in vitro and in vivo. In addition to the 4 serotypes of DENV, NITD008 inhibits other flaviviruses, including West Nile virus, yellow fever virus, and Powassan virus. The compound also suppresses hepatitis C virus, but it does not inhibit nonflaviviruses, such as Western equine encephalitis virus and vesicular stomatitis virus. A triphosphate form of NITD008 directly inhibits the RNA-dependent RNA polymerase activity of DENV, indicating that the compound functions as a chain terminator during viral RNA synthesis. NITD008 has good in vivo pharmacokinetic properties and is biologically available through oral administration. Treatment of DENV-infected mice with NITD008 suppressed peak viremia, reduced cytokine elevation, and completely prevented the infected mice from death. No observed adverse effect level (NOAEL) was achieved when rats were orally dosed with NITD008 at 50 mg/kg daily for 1 week. However, NOAEL could not be accomplished when rats and dogs were dosed daily for 2 weeks. Nevertheless, our results have proved the concept that a nucleoside inhibitor could be developed for potential treatment of flavivirus infections.

Collaboration


Dive into the Pei Yong Shi's collaboration.

Top Co-Authors

Avatar

Chao Shan

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Bo Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuping Xie

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Zhiming Yuan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Julien Lescar

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Jing Zou

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Laura D. Kramer

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Cheng-Feng Qin

Anhui Medical University

View shared research outputs
Top Co-Authors

Avatar

Kristen A. Bernard

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge