Peide Sun
Zhejiang Gongshang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peide Sun.
Bioresource Technology | 2013
Jing Cai; Ping Zheng; Jiqiang Zhang; Zuofu Xie; Wei Li; Peide Sun
Two-chamber Microbial Fuel Cells (MFC) using graphite rods as electrodes were operated for simultaneous anaerobic sulfide and nitrate removal coupled with electricity generation. The MFC showed good ability to remove substrates. When the influent sulfide and nitrate concentrations were 780 mg/L and 135.49 mg/L, respectively, the removal percentages of sulfide and nitrate were higher than 90% and the main end products were nitrogen and sulfate. The MFC also showed good ability to generate electricity, and the voltage went up with the rise of influent substrate concentrations. When the external resistance was 1000 Ω, its highest steady voltage was 71 mV. Based on the linear relationship between the electrons released by substrates and accepted by electrode, it was concluded that the electricity generation was coupled with the substrate conversion in the MFC.
Bioresource Technology | 2013
Xiongliu Zheng; Peide Sun; Juqing Lou; Zhiguo Fang; Maoxin Guo; Yingqi Song; Xiudi Tang; Tao Jiang
This study investigated the long-term effect of nitrite on the granule-based enhanced biological phosphorus removal (EBPR) system and the reversibility from macro- to micro-scale. Nitrite was found to seriously deteriorate the EBPR performance and result in severe sludge bulking. The inhibited polysaccharides excretion could lead to breaking the stability and integrity of the granules. Therefore, the reduced particle size and granule disintegration were observed. In this study, granules with lower ratio of proteins to polysaccharides (1.76) had better structure and function than the higher (3.84). Experimental results demonstrated that the microbial community structure was largely changed due to the presence of nitrite. In comparison, glycogen accumulating organisms (GAOs) had stronger resistibility and higher recovery rate than poly-phosphate accumulating organisms (PAOs). Interestingly, the community composition was unable to recover (Dice coefficients, 33.0%), although good EBPR performance was achieved only by propagating other types of PAOs.
Bioresource Technology | 2011
Juqing Lou; Peide Sun; Maoxin Guo; Ge Wu; Yingqi Song
A symbiotic ecosystem between Tubificidae and microorganisms was established at a full-scale wastewater treatment plant (WWTP). In this ecosystem Tubificidae were inoculated, and then adhered to the outer layers of carrier materials in an oxidation tank. During the long-term treatment of sewage volumes of 20,000 m(3)d(-1), the excess sludge production rate was reduced from 0.21 to 0.051 kg m(-3) and sludge settleability was significantly improved. When the influent concentrations of COD, NH(4)(+)-N, PO(4)(-)-P, and SS were in the ranges of 130.0-459.0 mg L(-1), 14.2-27.5 mg L(-1), 1.6-7.0 mg L(-1), and 60.0-466.0 mg L(-1), respectively, the COD and SS removal efficiency was increased by 8.7% and 13.6% within the symbiotic system compared to the control without Tubificidae. In addition, NH(4)(+)-N and phosphorus removal efficiency can also be improved. The results showed that both sludge reduction and nutrient removal were enhanced simultaneously significantly within the system utilizing the symbiotic interactions of Tubificidae and microorganisms.
Bioresource Technology | 2014
Shenjing Yu; Peide Sun; Wei Zheng; Lujun Chen; Xiongliu Zheng; Jingyi Han; Tao Yan
In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1).
Bioresource Technology | 2013
Xiongliu Zheng; Peide Sun; Juqing Lou; Jing Cai; Yingqi Song; Shenjing Yu; Xuanyu Lu
The inhibition of free ammonia (FA) to the granule-based enhanced biological phosphorus removal (EBPR) system and the recoverability from macro- to micro-scale were investigated in this study. FA was found to seriously deteriorate the EBPR performance and sludge characteristic (settleability and morphology). The FA inhibitory threshold of 17.76 mg NL(-1) was established. Acclimation phenomenon took place when poly-phosphate accumulating organisms (PAOs) were exposed for long time to constant FA concentration (8.88 mg NL(-1)). The repressed polysaccharides excretion could lead to breaking the stability and integrity of the granules. Therefore, the reduced particle size and granule disintegration were observed. The molecular analysis revealed that FA had a significant influence on the microbial communities and FA inhibition may provide a competitive advantage to glycogen accumulating organisms (GAOs) over PAOs. Interestingly, the community composition was found irreversible by recovery (Dice coefficients, 36.3%), although good EBPR performance was re-achieved.
Science of The Total Environment | 2015
Peide Sun; Keke Zhang; Jing Fang; Daohui Lin; Minhao Wang; Jingyi Han
This paper aimed to investigate the influences of surfactants on the nanoparticle transport behavior in soil. The transport behaviors of TiO2 nanoparticles (nTiO2) in soil with three different surfactants, including Triton X-100 (TX-100), sodium dodecylbenzene sulfonate (SDBS) and cationic cetyl trimethylammonium bromide (CTAB) were studied. Results showed that all the three surfactants decreased the mobility of nTiO2 in soil column, which were mainly caused by the strong adsorption of surfactants on soil and nTiO2. The inhibition order was as follows: CTAB>SDBS>TX-100. Combined effect experiments showed that when solution ionic strength (IS) increased, TX-100 or CTAB inhibited the mobility of nTiO2 in soil. However, the effect of SDBS on nTiO2 transport shifted from inhibition to facilitation when IS increased from 0.1 to 5mM. This was mainly attributed to the decreasing adsorption of SDBS on soil with increased IS, whereas the adsorption of TX-100 and CTAB was independent of IS. This innovative information motivates further insight into the role of surfactants on nanoparticle transport behavior in soil.
Chemosphere | 2015
Jing Fang; Bin Su; Peide Sun; Juqing Lou; Jingyi Han
In light of the fact that most wastewater in China contained both industrial and domestic wastewater, a 52-d systematical investigation was conducted on the long-term effect of low concentration Cr(VI) (0.3-0.8 mg L(-1)) on P removal performance of granule-based EBPR system in this study. The mechanisms were likewise discussed. Results showed that high Cr(VI) concentration (⩾0.5 mg L(-1)) could significantly inhibit P removal, while this phenomenon was not found when Cr(VI) concentration was less than (or equal to) 0.4 mg L(-1). Most of the granules was disintegrated and filamentous bacteria overgrew inducing sludge bulking occurred at 0.7 mg L(-1) Cr(VI). During the exposure test, the abundance of poly-phosphate-accumulating organisms (PAOs) significantly decreased while the populations of glycogen accumulating organisms (GAOs) and other bacteria increased. Both production and degradation of poly-β-hydroxyakanoates (PHAs) were apparently inhibited. An improved polysaccharide/protein (PS/PN) ratio was observed with the increasing Cr(VI) concentration, implying excessive polysaccharide was secreted by microorganisms to support its resistance to the toxicity of Cr(VI). Besides, good linear regression between PS/PN ratio and the granule size (R(2)=-0.86, p<0.01) was obtained, indicating that high PS/PN was adverse to granule stability. Correlation analysis indicated that the accumulation of granules intracellular Cr was directly responsible for the observed inhibitory effect on P removal process. The long-term Cr(VI) treatment had irreversible effects on granule-based EBPR system as it could not revive after a 16-d recovery process.
Bioresource Technology | 2013
Min Yang; Peide Sun; Ruyi Wang; Jingyi Han; Jianqiao Wang; Yingqi Song; Jing Cai; Xiudi Tang
An optimal operating condition for ammonia removal at low temperature, based on fully coupled activated sludge model (FCASM), was determined in a full-scale oxidation ditch process wastewater treatment plant (WWTP). The FCASM-based mechanisms model was calibrated and validated with the data measured on site. Several important kinetic parameters of the modified model were tested through respirometry experiment. Validated model was used to evaluate the relationship between ammonia removal and operating parameters, such as temperature (T), dissolved oxygen (DO), solid retention time (SRT) and hydraulic retention time of oxidation ditch (HRT). The simulated results showed that low temperature have a negative effect on the ammonia removal. Through orthogonal simulation tests of the last three factors and combination with the analysis of variance, the optimal operating mode acquired of DO, SRT, HRT for the WWTP at low temperature were 3.5 mg L(-1), 15 d and 14 h, respectively.
Bioresource Technology | 2009
Peide Sun; Ruyi Wang; Zhiguo Fang
A sub-microscopic mechanism model named Fully Coupled Activated Sludge Model (FCASM) about biological nutrient removal in the wastewater treatment process was developed in the present study. The functional organisms existing simultaneously in the activated sludge system were separated into eight groups, including aerobic heterotrophic organisms, nitrite reducing organisms, nitrate reducing organisms, ammonium oxidizing autotrophs, nitrite oxidizing autotrophs, non-denitrifying phosphorus-accumulating organisms (PAOs), denitrifying phosphorus-accumulating bacteria (DPB), and glycogen-accumulating organisms (GAOs). In FCASM, the interaction relationships of the eight functional microorganisms were taken fully into account. FCASM could model biological nitrogen removal via nitrite by splitting nitrification process and denitrification process into two-step reactions, and the autotrophs and denitrifying organisms were divided into two groups, respectively. Whats important, FCASM included the anaerobic maintenance processes of sequential utilization of polyphosphate followed by glycogen for PAOs and DPB and glycolysis of the intracellular stored glycogen for GAOs.
Bioresource Technology | 2017
Zhetai Hu; Xuanyu Lu; Peide Sun; Zhirong Hu; Ruyi Wang; Chengke Lou; Jingyi Han
In this study, the impacts of ZnO Nanoparticles (NPs) on the microbial community in enhanced biological phosphorus removal (EBPR) system and its recoverability were investigated. High-throughput sequencing was applied to study the microbial community shift. Results show that the species richness in the EBPR system was reduced under the condition of ZnO NPs with high concentration (above 6mg/L). Evolution analysis suggests that higher concentration ZnO NPs induced more microbial community shift. According to the analysis on genus level, Competibacter was more impressionable than Accumulibacter after exposure to 2mg/L ZnO NPs. Nonetheless, this phenomenon could not be found as the concentration of ZnO NPs got higher (above 6mg/L). Accumulibacter could reach to the initial level after recover for 20days, whereas Competibacter could not recover even when the concentration of ZnO NPs was only 2mg/L. Interestingly, although the phosphorus removal (P-removal) process was re-achieved, the microbial community in reactors was irreversible.