Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peihong Zhu is active.

Publication


Featured researches published by Peihong Zhu.


Journal of Immunology | 2000

Involvement of Cytosolic Phospholipase A2 and Secretory Phospholipase A2 in Arachidonic Acid Release from Human Neutrophils

John Marshall; Eric Krump; Thomas F. Lindsay; Gregory P. Downey; David A. Ford; Peihong Zhu; Paul R. Walker; Barry B. Rubin

The purpose of this study was to define the role of secretory phospholipase A2 (sPLA2), calcium-independent PLA2, and cytosolic PLA2 (cPLA2) in arachidonic acid (AA) release from fMLP-stimulated human neutrophils. While fMLP induced the release of extracellular sPLA2 activity and AA, 70% of sPLA2 activity remained associated with the cell. Treatment with the cell-impermeable sPLA2 inhibitors DTT or LY311-727, or the anti-sPLA2 Ab 3F10 all inactivated extracellular sPLA2 activity, but had minimal effect on neutrophil AA mass release. In contrast, coincubation of streptolysin-O toxin-permeabilized neutrophils with DTT, LY311-727, or 3F10 all decreased [3H8]AA release from [3H8]AA-labeled, fMLP-stimulated cells. Exposure to fMLP resulted in a decrease in the electrophoretic mobility of cPLA2, a finding consistent with cPLA2 phosphorylation, and stimulated the translocation of cPLA2 from cytosolic to microsomal and nuclear compartments. The role of cPLA2 was further evaluated with the cPLA2 inhibitor methyl arachidonyl fluorophosphonate, which attenuated cPLA2 activity in vitro and decreased fMLP-stimulated AA mass release by intact neutrophils, but had no effect on neutrophil sPLA2 activity. Inhibition of calcium-independent PLA2 with haloenol lactone suicide substrate had no effect on neutrophil cPLA2 activity or AA mass release. These results indicate a role for cPLA2 and an intracellular or cell-associated sPLA2 in the release of AA from fMLP-stimulated human neutrophils.


Mass Spectrometry Reviews | 2010

Mass spectrometry of peptides and proteins from human blood

Peihong Zhu; Peter Bowden; Du Zhang; John Marshall

It is difficult to convey the accelerating rate and growing importance of mass spectrometry applications to human blood proteins and peptides. Mass spectrometry can rapidly detect and identify the ionizable peptides from the proteins in a simple mixture and reveal many of their post-translational modifications. However, blood is a complex mixture that may contain many proteins first expressed in cells and tissues. The complete analysis of blood proteins is a daunting task that will rely on a wide range of disciplines from physics, chemistry, biochemistry, genetics, electromagnetic instrumentation, mathematics and computation. Therefore the comprehensive discovery and analysis of blood proteins will rank among the great technical challenges and require the cumulative sum of many of mankinds scientific achievements together. A variety of methods have been used to fractionate, analyze and identify proteins from blood, each yielding a small piece of the whole and throwing the great size of the task into sharp relief. The approaches attempted to date clearly indicate that enumerating the proteins and peptides of blood can be accomplished. There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease. At present both discovery and quantification of proteins from blood are commonly reaching sensitivities of ∼1 ng/mL.


Journal of Proteome Research | 2009

Human serum proteins fractionated by preparative partition chromatography prior to LC-ESI-MS/MS.

Monika Tucholska; Peter Bowden; Kellie Jacks; Peihong Zhu; Shirley Furesz; Mila Dumbrovsky; John Marshall

Many proteomics studies are limited to the identification of only the most abundant proteins in a sample due to the high sample complexity in most proteomes. We have here addressed this problem by prefractionation of human blood samples using microchromatography. We show that our approach resulted in high-stringency tryptic peptides identified by LC-ESI-MS/MS. Serum proteins were fractionated by batch and stepwise preparative chromatography using various types of chromatography resins (propyl sulfate, quaternary amine, diethylaminoethanol, cibachron blue, phenol Sepharose, carboxy methyl sepharose, hydroxyl apatite, heparin, concanavalin A and protein G) that were compared. The efficacy of sample fractionation was determined by protein assays, electrophoresis, and mass spectrometry. Tryptic peptides were separated by C18 liquid chromatography with electrospray ionization via metal needle at 2 microL/min with ion trap tandem mass spectrometry. The MS/MS spectra were correlated to some 4396 distinct sequences of the human forward RefSeq by X!TANDEM. Of these, 61% have been detected by other algorithms, but 3219 (73%) were never previously reported from blood by X!TANDEM. The use of a simple apparatus for making gravity microchromatography columns that permits the rapid side-by-side fractionation of many serum samples is described. Disposable microcolumns rapidly prepared blood samples for LC ESI-MS/MS that detected both tissue and cell leakage proteins known to exist in the approximately 1 ng/mL range and some circulating receptor sequences. Our results demonstrate that the depletion of albumin or IgG was not necessary prior to LC-MS/MS and that multiple forms of protein chromatography will be useful for complete identification of blood proteins.


Analytical Biochemistry | 2008

Capture of an activated receptor complex from the surface of live cells by affinity receptor chromatography

Andy Jankowski; Peihong Zhu; John Marshall

Cell surface receptors and their associated signaling pathways on the plasma membrane are key targets in understanding cellular responses. However, the isolation and identification of receptor complexes has been elusive. The Fc receptor was captured from the surface of live cells using microbeads coated with the receptors cognate ligand, gamma globulin (IgG), and analyzed by liquid chromatography and tandem mass spectrometry (LC-MS/MS) alongside several controls. Live-cell affinity receptor chromatography (LARC) resulted in a partially nonredundant list of 288 proteins that were specific to the Fc receptor complex. The proteins identified were in close agreement with previously determined factors in the Fc receptor complex as demonstrated by genetic and biochemical methods and revealed novel complex members. Confocal microscopy was used to confirm recruitment of SRC, SYK, PLC, PKC, PI3K, SHIP, TEC, CDC42, RAP, PAK, GAP, GEF, GRP, and CRK to the receptor complex upon activation by the same ligand microbeads. The expression of mutants and silencing RNA against specific isoforms were used to demonstrate a functional role for novel members of the Fc receptor complex, including RHOG (RAS homologue member G), p115 RhoGEF (protein of 115-kDa RAS homologue guanine exchange factor), and CRKL (CRK-like). The recruitment of AKT pleckstrin homology (PH) domain green fluorescent protein (GFP) was used to quantify the production of phosphorylated inositol at the activated receptor complex. We conclude that it is feasible to capture an activated receptor complex from the surface of live cells using ligand-coated microbeads for identification of members of a receptor complex or pathway by LC-MS/MS.


Clinical Proteomics | 2006

Comparison of protein expression lists from mass spectrometry of human blood fluids using exact peptide sequences versus BLAST

Peihong Zhu; Peter Bowden; Voitek Pendrak; Herbert Thiele; Du Zhang; Michael Siu; Eleftherios P. Diamandis; John Marshall

The proteins in blood were all first expressed as mRNAs from genes within cells. There are databases of human proteins that are known to be expressed as mRNA in human cells and tissues. Proteins identified from human blood by the correlation of mass spectra that fail to match human mRNA expression products may not be correct. We compared the proteins identified in human blood by mass spectrometry by 10 different groups by correlation to human and nonhuman nucleic acid sequences. We determined whether the peptides or proteins identified by the different groups mapped to the human known proteins of the Reference Sequence (RefSeq) database. We used Structured Query Language data base searches of the peptide sequences correlated to tandem mass spectrometry spectra and basic local alignment search tool analysis of the identified full length proteins to control for correlation to the wrong peptide sequence or the existence of the same or very similar peptide sequence shared by more than one protein. Mass spectra were correlated against large protein data bases that contain many sequences that may not be expressed in human beings yet the search returned a very high percentage of peptides or proteins that are known to be found in humans. Only about 5% of proteins mapped to hypothetical sequences, which is in agreement with the reported false-positive rate of searching algorithms conditions. The results were highly enriched in secreted and soluble proteins and diminished in insoluble or membrane proteins. Most of the proteins identified were relatively short and showed a similar size distribution compared to the RefSeq database. At least three groups agree on a nonredundant set of 1671 types of proteins and a nonredundant set of 3151 proteins were identified by at least three peptides.


Journal of Proteome Research | 2012

Quantitative statistical analysis of standard and human blood proteins from liquid chromatography, electrospray ionization, and tandem mass spectrometry.

Peter Bowden; Thanusi Thavarajah; Peihong Zhu; Mike McDonell; Herbert Thiele; John Marshall

It will be important to determine if the parent and fragment ion intensity results of liquid chromatography, electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) experiments have been randomly and independently sampled from a normal population for the purpose of statistical analysis by general linear models and ANOVA. The tryptic parent peptide and fragment ion m/z and intensity data in the mascot generic files from LC-ESI-MS/MS of purified standard proteins, and human blood protein fractionated by partition chromatography, were parsed into a Structured Query Language (SQL) database and were matched with protein and peptide sequences provided by the X!TANDEM algorithm. The many parent and/or fragment ion intensity values were log transformed, tested for normality, and analyzed using the generic Statistical Analysis System (SAS). Transformation of both parent and fragment intensity values by logarithmic functions yielded intensity distributions that closely approximate the log-normal distribution. ANOVA models of the transformed parent and fragment intensity values showed significant effects of treatments, proteins, and peptides, as well as parent versus fragment ion types, with a low probability of false positive results. Transformed parent and fragment intensity values were compared over all sample treatments, proteins or peptides by the Tukey-Kramer Honestly Significant Difference (HSD) test. The approach provided a complete and quantitative statistical analysis of LC-ESI-MS/MS data from human blood.


Analytical Biochemistry | 2011

Chi-square comparison of tryptic peptide-to-protein distributions of tandem mass spectrometry from blood with those of random expectation.

Peihong Zhu; Peter Bowden; Monika Tucholska; John Marshall

Proteomics uses tandem mass spectrometers and correlation algorithms to match peptides and their fragment spectra to amino acid sequences. The replication of multiple liquid chromatography experiments with electrospray ionization of peptides and tandem mass spectrometry (LC-ESI-MS/MS) produces large sets of MS/MS spectra. There is a need to assess the quality of large sets of experimental results by statistical comparison with that of random expectation. Classical frequency-based statistics such as goodness-of-fit tests for peptide-to-protein distributions could be used to calculate the probability that an entire set of experimental results has arisen by random chance. The frequency distributions of authentic MS/MS spectra from human blood were compared with those of false positive MS/MS spectra generated by a computer, or instrument noise, using the chi-square test. Here the mechanics of the chi-square test to compare the results in toto from a set of LC-ESI-MS/MS experiments with those of random expectation is detailed. The chi-square analysis of authentic spectra demonstrates unambiguously that the analysis of blood proteins separated by partition chromatography prior to tryptic digestions has a low probability that the cumulative peptide-to-protein distribution is the same as that of random or noise false positive spectra.


Journal of Proteomics | 2010

Meta sequence analysis of human blood peptides and their parent proteins

Peter Bowden; Voitek Pendrak; Peihong Zhu; John Marshall

Sequence analysis of the blood peptides and their qualities will be key to understanding the mechanisms that contribute to error in LC-ESI-MS/MS. Analysis of peptides and their proteins at the level of sequences is much more direct and informative than the comparison of disparate accession numbers. A portable database of all blood peptide and protein sequences with descriptor fields and gene ontology terms might be useful for designing immunological or MRM assays from human blood. The results of twelve studies of human blood peptides and/or proteins identified by LC-MS/MS and correlated against a disparate array of genetic libraries were parsed and matched to proteins from the human ENSEMBL, SwissProt and RefSeq databases by SQL. The reported peptide and protein sequences were organized into an SQL database with full protein sequences and up to five unique peptides in order of prevalence along with the peptide count for each protein. Structured query language or BLAST was used to acquire descriptive information in current databases. Sampling error at the level of peptides is the largest source of disparity between groups. Chi Square analysis of peptide to protein distributions confirmed the significant agreement between groups on identified proteins.


Analytical Biochemistry | 2011

Peptide-to-protein distribution versus a competition for significance to estimate error rate in blood protein identification.

Peihong Zhu; Peter Bowden; Monika Tucholska; Du Zhang; John Marshall

The simplest model-that authentic tandem mass spectrometry (MS/MS) spectra are no different from noise, random spectra, or false-positive results-may be directly examined by chi-square comparison of the peptide-to-protein distribution. The peptide-to-protein distribution of a set of 4151 redundant blood proteins identified by X!TANDEM indicated that there is a low probability that the authentic data were the same as noise, random spectra, or false-positive correlations (P<0.0001). In contrast, a competition for significance failed to distinguish approximately 90% of authentic blood proteins from those of noise, random spectra, or false-positive results (P<0.01) and apparently incurred a large type II error (false negative). The chi-square test of peptide-to-protein frequency distributions was found to be an efficient means to distinguish authentic data from false-positive results. Frequency-based statistics unambiguously demonstrated that proteins can be identified by liquid chromatography-electrospray ionization-MS/MS from human blood with acceptable confidence. Thus, the chi-square fit of the peptide-to-protein distribution could distinguish authentic data from random or false-positive data, but the score distribution method could not separate real results from false results.


Clinical Proteomics | 2006

Comparison of methods to examine the endogenous peptides of fetal calf serum

Declan Williams; Peihong Zhu; Peter Bowden; Catherine Stacey; Mike McDonell; Paul Kowalski; Jane Marie Kowalski; Kenneth R. Evans; Eleftherios P. Diamandis; K. W. Michael Siu; John Marshall

There is a great desire to relate the patterns of endogenous peptides in blood to human disease and drug response. The best practices for the preparation of blood fluids for analysis are not clear and also relatively few of the peptides in blood have been identified by tandem mass spectrometry. We compared a number of sample preparation methods to extract endogenous peptides including C18 reversed phase, precipitation, and ultrafiltration. We examined the results of these sample preparation methods by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-tandem mass spectrometry (MS/MS) using MALDI-TOF/TOF and electrospray ionization-ion trap. Peptides from solid-phase extraction with C18 in the range of hundreds of femtomoles per spot were detected from the equivalent of 1 μL of serum by MALDI-TOF. We observed endogenous serum peptides from fibrinogen α- and β-chain, complement C3, α-2-HS-glycoprotein, albumin, serine (or cysteine) proteinase inhibitor, factor VIII, plasminogen, immunoglobulin, and other abundant blood proteins. However, we also recorded significant MS/MS spectra from tumor necrosis factor-α-, major histocompatibility complex-, and angiotensin-related peptides, as well as peptides from collagens and other low-abundance proteins. Amino acid substitutions were detected and a phosphorylated peptide was also observed. This is the first time the endogenous peptides of fetal serum have been examined by MS and where peptides from low-abundance proteins, phosphopeptides, and amino acid substitutions were detected.

Collaboration


Dive into the Peihong Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Du Zhang

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge