Peike Sheng
Hunan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peike Sheng.
PLOS Genetics | 2013
He-Ren Gao; Xiao-Ming Zheng; Gui-Lin Fei; Jun Chen; Mingna Jin; Yulong Ren; Weixun Wu; Kunneng Zhou; Peike Sheng; Feng Zhou; Ling Jiang; Jie Wang; Xin Zhang; Xiuping Guo; Jiulin Wang; Zhijun Cheng; Chuanyin Wu; Haiyang Wang; Jianmin Wan
Land plants have evolved increasingly complex regulatory modes of their flowering time (or heading date in crops). Rice (Oryza sativa L.) is a short-day plant that flowers more rapidly in short-day but delays under long-day conditions. Previous studies have shown that the CO-FT module initially identified in long-day plants (Arabidopsis) is evolutionary conserved in short-day plants (Hd1-Hd3a in rice). However, in rice, there is a unique Ehd1-dependent flowering pathway that is Hd1-independent. Here, we report isolation and characterization of a positive regulator of Ehd1, Early heading date 4 (Ehd4). ehd4 mutants showed a never flowering phenotype under natural long-day conditions. Map-based cloning revealed that Ehd4 encodes a novel CCCH-type zinc finger protein, which is localized to the nucleus and is able to bind to nucleic acids in vitro and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional regulator. Ehd4 expression is most active in young leaves with a diurnal expression pattern similar to that of Ehd1 under both short-day and long-day conditions. We show that Ehd4 up-regulates the expression of the “florigen” genes Hd3a and RFT1 through Ehd1, but it acts independently of other known Ehd1 regulators. Strikingly, Ehd4 is highly conserved in the Oryza genus including wild and cultivated rice, but has no homologs in other species, suggesting that Ehd4 is originated along with the diversification of the Oryza genus from the grass family during evolution. We conclude that Ehd4 is a novel Oryza-genus-specific regulator of Ehd1, and it plays an essential role in photoperiodic control of flowering time in rice.
Proceedings of the National Academy of Sciences of the United States of America | 2014
He Gao; Mingna Jin; Xiao-Ming Zheng; Jun Chen; Dingyang Yuan; Yeyun Xin; Maoqing Wang; Dongyi Huang; Zhe Zhang; Kunneng Zhou; Peike Sheng; Jin Ma; Weiwei Ma; Huafeng Deng; Ling Jiang; Shijia Liu; Haiyang Wang; Chuanyin Wu; Longping Yuan; Jianmin Wan
Significance Flowering time is one of the best studied ecologically important traits under natural or human selection for adaptation of plants to specific local environments. Photoperiodic sensitivity is a major agronomic trait that tailors vegetative and reproductive growth to local climates and is thus particularly important for crop yield and quality. This study not only identifies a major quantitative trait locus underlying photoperiod sensitivity in rice (Days to heading 7, DTH7) but also demonstrates that various haplotype combinations of DTH7 with Grain number, plant height, and heading date 7 (Ghd7) and DTH8 correlate well with the flowering time and grain yield of rice varieties under diverse cultivating conditions. Our results build a foundation for breeding of high-yield rice varieties with desired photosensitivity and optimum adaptation to the target environments. Success of modern agriculture relies heavily on breeding of crops with maximal regional adaptability and yield potentials. A major limiting factor for crop cultivation is their flowering time, which is strongly regulated by day length (photoperiod) and temperature. Here we report identification and characterization of Days to heading 7 (DTH7), a major genetic locus underlying photoperiod sensitivity and grain yield in rice. Map-based cloning reveals that DTH7 encodes a pseudo-response regulator protein and its expression is regulated by photoperiod. We show that in long days DTH7 acts downstream of the photoreceptor phytochrome B to repress the expression of Ehd1, an up-regulator of the “florigen” genes (Hd3a and RFT1), leading to delayed flowering. Further, we find that haplotype combinations of DTH7 with Grain number, plant height, and heading date 7 (Ghd7) and DTH8 correlate well with the heading date and grain yield of rice under different photoperiod conditions. Our data provide not only a macroscopic view of the genetic control of photoperiod sensitivity in rice but also a foundation for breeding of rice cultivars better adapted to the target environments using rational design.
Molecular Plant | 2014
Junjie Tan; Zhenhua Tan; Fuqing Wu; Peike Sheng; Yueqin Heng; Xinhua Wang; Yulong Ren; Jiulin Wang; Xiuping Guo; Xin Zhang; Zhijun Cheng; Ling Jiang; Xuanming Liu; Haiyang Wang; Jianmin Wan
Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and modulate organellar gene expression by participating in various aspects of organellar RNA metabolism. In rice, the family contains 477 members, and the majority of their functions remain unclear. In this study, we isolated and characterized a rice mutant, white stripe leaf (wsl), which displays chlorotic striations early in development. Map-based cloning revealed that WSL encodes a newly identified rice PPR protein which targets the chloroplasts. In wsl mutants, PEP-dependent plastid gene expression was significantly down-regulated, and plastid rRNAs and translation products accumulate to very low levels. Consistently with the observations, wsl shows a strong defect in the splicing of chloroplast transcript rpl2, resulting in aberrant transcript accumulation and its product reduction in the mutant. The wsl shows enhanced sensitivity to ABA, salinity, and sugar, and it accumulates more H2O2 than wild-type. These results suggest the reduced translation efficiency may affect the response of the mutant to abiotic stress.
Nature Communications | 2015
Qibing Lin; Fuqing Wu; Peike Sheng; Zhe Zhang; Xin Zhang; Xiuping Guo; Jiulin Wang; Zhijun Cheng; Jie Wang; Haiyang Wang; Jianmin Wan
Abscisic acid (ABA) and gibberellic acid (GA) antagonistically regulate many developmental processes and responses to biotic or abiotic stresses in higher plants. However, the molecular mechanism underlying this antagonism is still poorly understood. Here, we show that loss-of-function mutation in rice Tiller Enhancer (TE), an activator of the APC/CTE complex, causes hypersensitivity and hyposensitivity to ABA and GA, respectively. We find that TE physically interacts with ABA receptor OsPYL/RCARs and promotes their degradation by the proteasome. Genetic analysis also shows OsPYL/RCARs act downstream of TE in mediating ABA responses. Conversely, ABA inhibits APC/CTE activity by phosphorylating TE through activating the SNF1-related protein kinases (SnRK2s), which may interrupt the interaction between TE and OsPYL/RCARs and subsequently stabilize OsPYL/RCARs. In contrast, GA can reduce the level of SnRK2s and may promote APC/CTE-mediated degradation of OsPYL/RCARs. Thus, we propose that the SnRK2-APC/CTE regulatory module represents a regulatory hub underlying the antagonistic action of GA and ABA in plants.
Plant Cell Reports | 2014
Peike Sheng; Junjie Tan; Mingna Jin; Fuqing Wu; Kunneng Zhou; Weiwei Ma; Yueqin Heng; Jiulin Wang; Xiuping Guo; Xin Zhang; Zhijun Cheng; Linglong Liu; Chunming Wang; Xuanming Liu; Jianmin Wan
Key messageMutation of theAM1gene causes an albino midrib phenotype and enhances tolerance to drought in riceAbstractK+ efflux antiporter (KEA) genes encode putative potassium efflux antiporters that are mainly located in plastid-containing organisms, ranging from lower green algae to higher flowering plants. However, little genetic evidence has been provided on the functions of KEA in chloroplast development. In this study, we isolated a rice mutant, albino midrib 1 (am1), with green- and white-variegation in the first few leaves, and albino midrib phenotype in older tissues. We found that AM1 encoded a putative KEA in chloroplast. AM1 was highly expressed in leaves, while lowly in roots. Chloroplast gene expression and proteins accumulation were affected during chlorophyll biosynthesis and photosynthesis in am1 mutants. Interestingly, AM1 was induced by salt and PEG, and am1 showed enhanced sensitivity to salinity in seed germination and increased tolerance to drought. Taken together, we concluded that KEAs were involved in chloroplast development and played important roles in drought tolerance.
Journal of Experimental Botany | 2015
Fuqing Wu; Peike Sheng; Junjie Tan; Xiuling Chen; Guangwen Lu; Weiwei Ma; Yueqin Heng; Qibing Lin; Shanshan Zhu; Jiulin Wang; Jie Wang; Xiuping Guo; Xin Zhang; Cailin Lei; Jianmin Wan
Highlight A leucine-rich repeat receptor-like kinase LP2 is transcriptionally controlled by zinc finger protein DST and serves as a negative regulator in drought response
Plant Molecular Biology | 2016
Peike Sheng; Fuqing Wu; Junjie Tan; Huan Zhang; Weiwei Ma; Liping Chen; Jiachang Wang; Jie Wang; Shanshan Zhu; Xiuping Guo; Jiulin Wang; Xin Zhang; Zhijun Cheng; Yiqun Bao; Chuanyin Wu; Xuanming Liu; Jianmin Wan
Flowering time determines the adaptability of crop plants to different local environments, thus being one of the most important agronomic traits targeted in breeding programs. Photoperiod is one of the key factors that control flowering in plant. A number of genes that participate in the photoperiod pathway have been characterized in long-day plants such as Arabidopsis, as well as in short-day plants such as Oryza sativa. Of those, CONSTANS (CO) as a floral integrator promotes flowering in Arabidopsis under long day conditions. In rice, Heading date1 (Hd1), a homologue of CO, functions in an opposite way, which inhibits flowering under long day conditions and induces flowering under short day conditions. Here, we show that another CONSTANS-like (COL) gene, OsCOL13, negatively regulates flowering in rice under both long and short day conditions. Overexpression of OsCOL13 delays flowering regardless of day length. We also demonstrated that OsCOL13 has a constitutive and rhythmic expression pattern, and that OsCOL13 is localized to the nucleus. OsCOL13 displays transcriptional activation activity in the yeast assays and likely forms homodimers in vivo. OsCOL13 suppresses the florigen genes Hd3a and RFT1 by repressing Ehd1, but has no relationship with other known Ehd1 regulators as determined by using mutants or near isogenic lines. In addition, the transcriptional level of OsCOL13 significantly decreased in the osphyb mutant, but remained unchanged in the osphya and osphyc mutants. Thus, we conclude that OsCOL13 functions as a negative regulator downstream of OsphyB and upstream of Ehd1 in the photoperiodic flowering in rice.
Journal of Experimental Botany | 2017
Shanshan Zhu; Jiachang Wang; Maohong Cai; Huan Zhang; Fuqing Wu; Yang Xu; Chaonan Li; Zhijun Cheng; Xin Zhang; Xiuping Guo; Peike Sheng; Mingming Wu; Jiulin Wang; Cailin Lei; Jie Wang; Zhichao Zhao; Chuanyin Wu; Haiyang Wang; Jianmin Wan
Flowering time is an important trait for determining the adaptability of a crop cultivar. A novel heading date regulator, OsHAPL1, interacts with DTH8-Hd1 to negatively regulate flowering time in rice.
The Plant Cell | 2015
Shengyang Wu; Yurong Xie; Junjie Zhang; Yulong Ren; Xin Zhang; Jiulin Wang; Xiuping Guo; Fuqing Wu; Peike Sheng; Juan Wang; Chuanyin Wu; Haiyang Wang; Shanjin Huang; Jianmin Wan
A rice VILLIN2 mutant, with altered microfilament dynamics, displays malformed organs associated with weakened membrane localization of the PIN2 protein and reduced polar auxin transport. As a fundamental and dynamic cytoskeleton network, microfilaments (MFs) are regulated by diverse actin binding proteins (ABPs). Villins are one type of ABPs belonging to the villin/gelsolin superfamily, and their function is poorly understood in monocotyledonous plants. Here, we report the isolation and characterization of a rice (Oryza sativa) mutant defective in VILLIN2 (VLN2), which exhibits malformed organs, including twisted roots and shoots at the seedling stage. Cellular examination revealed that the twisted phenotype of the vln2 mutant is mainly caused by asymmetrical expansion of cells on the opposite sides of an organ. VLN2 is preferentially expressed in growing tissues, consistent with a role in regulating cell expansion in developing organs. Biochemically, VLN2 exhibits conserved actin filament bundling, severing and capping activities in vitro, with bundling and stabilizing activity being confirmed in vivo. In line with these findings, the vln2 mutant plants exhibit a more dynamic actin cytoskeleton network than the wild type. We show that vln2 mutant plants exhibit a hypersensitive gravitropic response, faster recycling of PIN2 (an auxin efflux carrier), and altered auxin distribution. Together, our results demonstrate that VLN2 plays an important role in regulating plant architecture by modulating MF dynamics, recycling of PIN2, and polar auxin transport.
Journal of Experimental Botany | 2016
Wang Cm; Yang Wang; Zhijun Cheng; Zhigang Zhao; Jun Chen; Peike Sheng; Weiwei Ma; Erchao Duan; Fuqing Wu; Linglong Liu; Ruizhen Qin; Xin Zhang; Xiuping Guo; Jiulin Wang; Ling Jiang; Jianmin Wan
Highlight The OsMSH4/OsMSH5 heterodimer interacts with type A and C RPA heterotrimer complexes during second-end capture to regulate crossing over during meiosis I in rice.